Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
LB
Luca Broggini
Author with expertise in Protein Structure Prediction and Analysis
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Multi-eGO: anin-silicolens to look into protein aggregation kinetics at atomic resolution

Emanuele Scalone et al.Feb 18, 2022
Abstract Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 diseases associated that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the characterization of the structures of the transient oligomers formed in the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long-time scales typical of aggregation processes have limited, so far, the use of computational methods. To surmount these limitations, we introduce here multi- e GO, an atomistic, hybrid structure-based model, which leveraging on the knowledge of monomers conformational dynamics and of fibril structures, can efficiently capture the essential structural and kinetics aspects of protein aggregation. Multi- e GO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments on an amyloidogenic peptide of Transthyretin, a protein responsible for one of the most common cardiac amyloidosis. Multi- e GO simulations allow to observe in time and at atomic resolution the formation of primary nuclei in a sea of transient lower order oligomers, to follow their growth and the subsequent secondary nucleation events, till the maturation of multiple fibrils. Multi- e GO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases. Significance Statement Alzheimer’s and Parkinson’s diseases are uncurable pathologies associated to the aberrant aggregation of specific proteins into amyloid fibrils. Understanding the mechanism leading to protein aggregation, by characterizing the structures of the oligomeric species populated in the process, would have a tremendous impact on the design of therapeutic molecules. We propose that a structure-based approach to molecular dynamics simulations can allow following at high resolution the aggregation kinetics of thousands of monomers. Having shown that simulations can describe the aggregation of a Transthyretin amyloidogenic peptide, we demonstrate how their efficiency allows acquiring a wealth of structural information. We foresee that integrating the latter with the many techniques developed to study protein aggregation will support the design of molecules to modulate amyloidogenesis.
9
Citation1
0
Save
1

Nanobodies counteract the toxicity of an amyloidogenic light chain by stabilizing a partially open dimeric conformation

Luca Broggini et al.Aug 29, 2023
ABSTRACT Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 V L domain and stabilise an unexpected partially open LC dimer in which the two V L domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.
0

A conformational fingerprint for amyloidogenic light chains.

Cristina Paissoni et al.Jul 13, 2024
Abstract Immunoglobulin light chain amyloidosis (AL) shares with multiple myeloma (MM) the overproduction of one clonal light chain (LC), but whereas in MM patients LC molecules remain soluble in circulation, AL LCs misfold into toxic soluble species and amyloid fibrils that accumulate in internal organs, leading to completely different clinical manifestations. The large sequence variability of LCs has hampered our understanding of the mechanism leading to LC aggregation. Nevertheless, some biochemical properties associated with AL-LC are emerging. The stability of the dimeric LCs seems to play a role, but conformational dynamics and susceptibility to proteolysis have been identified as biophysical parameters that, under native conditions, can better distinguish AL-LCs from LCs found in MM. In this study, our goal was to delineate a conformational fingerprint that could discriminate AL from MM LCs. By subjecting four AL and two MM LCs to in vitro analysis under native conditions using small-angle X-ray scattering (SAXS), we observed that the AL LCs exhibited a slightly larger radius of gyration and greater deviation from the experimentally determined structure, indicating enhanced conformational dynamics. Integrating SAXS with molecular dynamics (MD) simulations to generate a conformational ensemble revealed that LCs can adopt multiple states, with VL and CL domains either bent or straight. AL-LCs favored a distinct state in which both domains were in a straight conformation, maximizing solvent accessibility at their relative interfaces. This unique conformation was experimentally validated by hydrogen-deuterium exchange mass spectrometry (HDX-MS). Such findings reconcile a wealth of experimental observations and provide a precise structural target for drug design investigations. Significance Statement The high sequence variability of antibody light chains complicates the understanding of the molecular determinants of their aggregation in AL patients. Extensive biophysical and structural analyses by our group and others have demonstrated that reduced kinetic and thermodynamic stability associated with higher conformational dynamics play a role in their amyloidogenic behavior, but specific structural elements contributing to these behaviors remain elusive. In addition, these features are not universal among all known LCs, fostering different interpretations of their aggregation mechanisms. By combining molecular dynamics simulations, small-angle X-ray scattering measurements, and hydrogen-deuterium mass exchange spectrometry, we found that enhanced conformational dynamics localized at CL-VL interface residues, coupled with structural expansion, are distinguishing features of amyloidogenic LCs.
0

An alternative conformation of the N-terminal loop of human dihydroorotate dehydrogenase drives binding to a potent antiproliferative agent

Marta Alberti et al.May 28, 2024
Over the years, human dihydroorotate dehydrogenase ( h DHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18 ). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18 , thus paving the way for a reappraisal of the inhibition of h DHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer K d /logD 7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.