EF
Elsa Flores
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(50% Open Access)
Cited by:
3,196
h-index:
43
/
i10-index:
78
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs

Xiaohua Su et al.Oct 18, 2010
The endoribonuclease Dicer is a key factor in the production of microRNAs. The deregulation of microRNA expression and potentially Dicer itself have been implicated in cancer. Elsa Flores and colleagues now show that TAp63, a member of the p53 family of tumour suppressors, suppresses tumorigenesis and metastasis by directly controlling the expression of Dicer and Dicer-regulated microRNAs. The aberrant expression of microRNAs and of the enzymes that control their processing has been reported in tumours, but the mechanisms involved are not clear. It is now shown that TAp63, a member of the p53 family of tumour suppressors, suppresses tumorigeneis and metastasis by directly controlling the expression of Dicer (a microRNA-processing enzyme) and Dicer-regulated microRNAs. Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours1,2,3,4,5,6, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.
0
Citation410
0
Save
0

Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences.

R. Matthews et al.May 1, 1992
Protein tyrosine phosphatases (PTPases) are a family of enzymes important in cellular regulation. Characterization of two cDNAs encoding intracellular PTPases expressed primarily in hematopoietic tissues and cell lines has revealed proteins that are potential regulators of signal transduction. One of these, SHP (Src homology region 2 [SH2]-domain phosphatase), possesses two tandem SH2 domains at the amino terminus of the molecule. SH2 domains have previously been described in proteins implicated in signal transduction, and SHP may be one of a family of nonreceptor PTPases that can act as direct antagonists to the nonreceptor protein tyrosine kinases. The SH2 domains of SHP preferentially bind a 15,000-Mr protein expressed by LSTRA cells. LSTRA cells were shown to express SHP protein by immunoprecipitation, thus demonstrating a potential physiological interaction. The other PTPase, PEP (proline-, glutamic acid-, serine-, and threonine-rich [PEST]-domain phosphatase), is distinguished by virtue of a large carboxy-terminal domain of approximately 500 amino acids that is rich in PEST residues. PEST sequences are found in proteins that are rapidly degraded. Both proteins have been expressed by in vitro transcription and translation and in bacterial expression systems, and both have been demonstrated to have PTPase activity. These two additional members of the PTPase family accentuate the variety of PTPase structures and indicate the potential diversity of function for intracellular tyrosine phosphatases.
3

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Joshua Campbell et al.Apr 1, 2018
Highlights•SCCs show chromosome or methylation alterations affecting multiple related genes•These regulate squamous stemness, differentiation, growth, survival, and inflammation•Copy-quiet SCCs have hypermethylated (FANCF, TET1) or mutated (CASP8, MAPK-RAS) genes•Potential targets include ΔNp63, WEE1, IAPs, PI3K-mTOR/MAPK, and immune responsesSummaryThis integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.Graphical abstract
3
Citation288
0
Save
0

JAK2-binding long noncoding RNA promotes breast cancer brain metastasis

Shouyu Wang et al.Nov 12, 2017
Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M– and IL-6–triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.
Load More