The assembly and development of the gut microbiome in infants has important consequences for immediate and long-term health. Preterm infants represent an abnormal case for bacterial colonization because of early exposure to bacteria and frequent use of antibiotics. To better understand the assembly of the gut microbiota in preterm infants, fecal samples were collected from 32 very low birthweight preterm infants over the first six weeks of life. Infant health outcomes included healthy, late-onset sepsis, and necrotizing enterocolitis (NEC). We characterized the bacterial composition by 16S rRNA gene sequencing and metabolome by untargeted gas chromatography mass spectrometry. Preterm infant fecal samples lacked beneficial Bifidobacterium and were dominated by Enterobacteriaceae, Enterococcus, and Staphylococcus due to the near uniform antibiotic administration. Most of the variance between the microbial community compositions could be attributed to which baby the sample came from (Permanova R2=0.48, p<0.001), while clinical status (healthy, NEC, or late-onset sepsis), and overlapping time in the NICU did not explain a significant amount of variation in bacterial composition. Fecal metabolomes were also found to be unique to the individual (Permanova R2=0.43, p<0.001) and weakly associated with bacterial composition (Mantel statistic r = 0.23 +/- 0.05 (p=0.03 +/- 0.03). No measured metabolites were found to be associated with necrotizing enterocolitis, late-onset sepsis or a healthy outcome. Overall, preterm infants gut microbial communities were personalized and reflected antibiotic usage.