MO
Makoto Osanai
Author with expertise in Olfactory Dysfunction in Health and Disease
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
0
h-index:
19
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemogenetic activation of target neurons expressing insect Ionotropic Receptors in the mammalian central nervous system by systemic administration of ligand precursors

Yoshinori Iguchi et al.Jan 1, 2023
The IR-mediated neuronal activation (IRNA) technology allows stimulation of neurons in the brain that heterologously-express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the current protocol, a ligand against the complex consisting of IR84a and IR8a subunits, phenylacetic acid (PhAc), is locally injected into a brain region, because of a low efficiency of PhAc for the delivery into the brain across the blood-brain barrier. To circumvent this invasive injection, here we developed a strategy for activation of target neurons in the brain through peripheral administration with a precursor of PhAc, methyl ester of PhAc (PhAcM), which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. Peripheral administration of with PhAcM activated IR84a/IR8a-expressing neurons in the locus coeruleus of mice and increased the release of neurotransmitters in their nerve terminal regions. (S)-2-phenylpropionic acid ((S)-PhPr) was newly identified as a ligand for IR84a/IR8a, and peripheral administration with the methyl ester of PhPr with the S-configuration [(S)-PhPrM] caused similar effects on the target neurons. In addition, cell-type specific expression of IR84a/IR8a complex in the striatum of rats was unilaterally induced with a viral vector based on the Cre-loxP system. Peripheral administration with PhAcM or (S)-PhPrM stimulated the neurotransmitter release in the ipsilateral terminal regions of the vector-injected striatum, and PhAcM administration resulted in rotational behavior. Finally, we demonstrated that the metabolites of the peripherally administered-radiolabeled (S)-PhPrM accumulated in the IR84a/IR8a-expressing region in the striatum of the vector-injected rats. These results demonstrate that the systemic IRNA technique provides a powerful strategy for remote manipulation of diverse types of target neurons in the mammalian central nervous system.
5

A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice

Susumu Setogawa et al.Oct 4, 2022
Abstract Characterization of inter-regional interactions in brain is essential for understanding the mechanism relevant to normal brain function and neurological disease. The recently developed flexible micro (μ)-electrocorticography (μECoG) device is one prominent method used to examine large-scale cortical activity across multiple regions. The sheet-shaped μECoG electrodes arrays can be placed on a relatively wide area of cortical surface beneath the skull by inserting the device into the space between skull and brain. Although rats and mice are useful tools for neuroscience, current μECoG recording methods in these animals are limited to the parietal region of cerebral cortex. Recording cortical activity from the temporal region of cortex in mice has proven difficult because of surgical barriers created by the skull and surrounding temporalis muscle anatomy. Here, we developed a sheet-shaped 64-channel μECoG device that allows access to the mouse temporal cortex, and we determined the factor determining the appropriate bending stiffness for the μECoG electrode array. We also established a surgical technique to implant the electrode arrays into the epidural space over a wide area of cerebral cortex covering from the barrel field to olfactory (piriform) cortex, which is the deepest region of the cerebral cortex. Using histology and computed tomography (CT) images, we confirmed that the tip of the μECoG device reached to the most ventral part of cerebral cortex without causing noticeable damage to the brain surface. Moreover, the device simultaneously recorded somatosensory and odor stimulus-evoked neural activity from dorsal and ventral parts of cerebral cortex in awake and anesthetized mice. These data indicate that our μECoG device and surgical techniques enable the recording of large-scale cortical activity from the parietal to temporal cortex in mice, including somatosensory and olfactory cortices. This system will provide more opportunities for the investigation of physiological functions from wider areas of the mouse cerebral cortex than those currently available with existing ECoG techniques.