ML
Martin Larsen
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2
h-index:
24
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Experience-induced remodeling of the hippocampal post-synaptic proteome and phosphoproteome

Seok Heo et al.Oct 28, 2021
Summary The post synaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the PSD proteome and phosphoproteome in mice following various treatments. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated for quantitative proteomic and phosphoproteomics analysis. We used a sequential enrichment strategy to explore the concurrent events of protein expression and phosphorylation in the hippocampal PSD following IA training (IA) or immediate shock (Shock). We identified more than 6,200 proteins and 3,000 phosphoproteins in the sequential strategy covering a total of 7,429 proteins. On the phosphoproteins we identified a total of 9,589 phosphosites. Strikingly, of the significantly IA-regulated proteins and phosphoproteins, a large fraction of the proteins displayed an overall decrease in phosphorylation level. Bioinformatic analysis of proteins and phosphoproteins that were regulated by IA were annotated for an involvement in regulation of glutamate receptor functionality, calcium signaling, and synaptic plasticity. We also identified synaptic kinases, phosphatases and their respective phosphosites regulated by IA training or immediate shock. Furthermore, we found that AMPA receptor surface expression was regulated by protein phosphatase, Mg 2+ /Mn 2+ dependent 1H (Ppm1h). Together, these results unravel the dynamic remodeling of the PSD upon IA learning or immediate shock and serve as a resource for elucidating the synaptic proteome dynamics induced by experience-dependent plasticity. Highlights The proteome and phosphoproteome of mouse hippocampal PSD fractions were examined using quantitative phosphoproteomics and bioinformatics following inhibitory avoidance training or non-associative immediate shock. Approximately 6,200 proteins and 3,000 phosphoproteins were identified and quantified in the hippocampal PSD fractions. IA mediates widespread decreases in the abundance and phosphorylation of proteins in the hippocampal PSD fraction. Kinases, phosphatases and their phosphorylation status were dynamically and significantly regulated by IA and immediate shock. Functional validation shows that the protein phosphatase Ppm1h is linked to the regulation of synaptic plasticity in vitro and in vivo . In Brief Quantitative proteomics and phosphoproteomics combined with subcellular protein fractionation and bioinformatic analysis identifies a highly dynamic regulation of synaptic protein phosphorylation at the postsynaptic density following IA training and immediate shock.
20
Citation1
0
Save
1

Insight into spatial intratumoral genomic evolution in glioblastoma

Atul Anand et al.Sep 12, 2023
Abstract Glioblastoma undergoes a complex and dynamic evolution involving genetic and epigenetic changes. Understanding the mechanisms underlying this evolution is vital for the development of efficient therapeutic strategies. Although treatment resistance is associated with intratumoral heterogeneity in glioblastoma, it remains uncertain whether hypometabolic and hypermetabolic lesions observed through positron emission tomography (PET) imaging are influenced by spatial intratumoral genomic evolution. In this study, we precisely isolated autologous hypometabolic and hypermetabolic lesions from glioblastoma using advanced neurosurgical and brain tumor imaging technologies, followed by comprehensive whole-genome exome and transcriptome analyses. Our findings revealed that hypermetabolic lesions evolved from hypometabolic lesions, harbored shrewd focal amplifications and deletions, and exhibited a higher frequency of critical genomic alterations linked to increased aggressiveness, upregulated APOBEC3 and hypoxic genes, and downregulated putative tumor suppressors. This study highlights spatial genomic evolution with diagnostic implications and unveils the obstacles and possibilities that should be considered in the development of novel therapeutic strategies. Statement of significance: Glioblastoma is a multifaceted disease that is difficult to treat, and insights into the metabolic gradient observed in imaging and the underlying role of genomic evolution are lacking. This study is the first to investigate the molecular basis of hypermetabolic tumor lesions in glioblastoma using precise three-dimensional biopsy isolation, whole genome/exome, and mRNA sequencing. These findings have diagnostic significance, provide insights into therapeutic resistance, and shed light on the obstacles encountered by precision therapeutics for glioblastoma.