DL
Dorota Latek
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GPCRmd uncovers the dynamics of the 3D-GPCRome

Ismael Rodríguez‐Espigares et al.Nov 13, 2019
G protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new 3D molecular structures of GPCRs (3D-GPCRome) during the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. While experimentally-resolved structures undoubtedly provide valuable snapshots of specific GPCR conformational states, they give only limited information on their flexibility and dynamics associated with function. Molecular dynamics (MD) simulations have become a widely established technique to explore the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations requires efficient storage resources and specialized software, hence limiting the dissemination of these data to specialists in the field. Here we present the GPCRmd ( ), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyse and share GPCR MD data. GPCRmd originates from a community-driven effort to create the first open, interactive, and standardized database of GPCR MD simulations. We demonstrate the power of this resource by performing comparative analyses of multiple GPCR simulations on two mechanisms critical to receptor function: internal water networks and sodium ion interaction.
0

Keras/TensorFlow in Drug Design for Immunity Disorders

Paulina Dragan et al.Jan 1, 2023
Homeostasis of the host immune system is regulated by white blood cells with a variety of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions towards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders such as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize the long-term effects of chronic inflammation. Here, we performed structure-based virtual screening (SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel com-pound scaffolds acting on three chemokine receptors: CCR2, CCR3 and one CXC receptor CXCR3. Keras/TensorFlow NN was used here not as a typically used binary classifier, but as an efficient multi-class classifier that can discard not only inactive compounds but also low or medium-activity compounds. Several compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simulations to confirm their binding affinity. To improve the basic binding affinity of the compounds, new chemical modifications were proposed. The modified compounds were compared with known antagonists of these three chemokine receptors. Known CXCR3 were among the top predicted compounds and thus benefits of using Keras/TensorFlow in drug discovery have been shown in addition to structure-based approaches. Furthermore, we showed that Keras/TensorFlow NN can accurately predict the receptor subtype selectivity of compounds, for which SBVS often fails. We cross-tested chemokine receptor datasets retrieved from ChEMBL and curated datasets for cannabinoid receptors available at: http://db-gpcr-chem.uw.edu.pl. The NN model trained on the cannabinoid receptor datasets re-trieved from ChEMBL was the most accurate in the receptor subtype selectivity prediction. Among NN models trained on the chemokine receptor datasets, the CXCR3 model showed the highest accuracy in differentiating the receptor subtype for a given compound dataset.