RK
Rohinton Kamakaka
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
539
h-index:
33
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

A cancer-associated RNA polymerase III identity drives robust transcription and expression of SNAR-A noncoding RNA

Kevin Bortle et al.Apr 22, 2021
ABSTRACT Dysregulation of the RNA polymerase III (Pol III) transcription program, which synthesizes tRNA and other classes of small noncoding RNA critical for cell growth and proliferation, is associated with cancer and human disease. Previous studies have identified two distinct Pol III isoforms defined by the incorporation of either subunit POLR3G (RPC7α) during early development, or POLR3GL (RPC7β) in specialized tissues. Though POLR3G is re-established in cancer and immortalized cell lines, the contributions of these isoforms to transcription potential and transcription dysregulation in cancer remain poorly defined. Using an integrated Pol III genomic profiling approach in combination with in vitro differentiation and subunit disruption experiments, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. In particular, we observe that a specific class of small noncoding RNA, SNAR-A , is exquisitely sensitive to the availability of subunit POLR3G in proliferating cells. Taken further, large-scale analysis of Pol III subunit expression and downstream chromatin features identifies concomitant loss of POLR3G and SNAR-A activity across a multitude of differentiated primary immune cell lineages, and conversely, coordinate re-establishment of POLR3G expression and SNAR-A features in a variety of human cancers. These results altogether argue against strict redundancy models for subunits POLR3G and POLR3GL, and instead support a model in which Pol III identity itself functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor.
3
Citation2
0
Save
0

Combinatorial analysis of Saccharomyces cerevisiae regulatory elements

Namrita Dhillon et al.Sep 23, 2019
Gene expression in Saccharomyces cerevisiae is regulated at multiple levels. Genomic and epigenomic mapping of transcription factors and chromatin components has led to the definition and delineation of various regulatory elements. Enhancers, promoters, 5 prime untranslated regions (5primeUTR) and transcription terminators/3prime untranslated regions (3primeUTR) have all been defined. However, the specific contributions of each of these features as part of a regulatory unit and the functional communications between these regulatory elements remains under explored. We built a combinatorial library of 26 different enhancers, core promoters, 5primeUTRs and transcription terminators/3primeUTRs. This library was analyzed with respect to gene expression in order to better understand the interactions between different regulatory elements. In the process we developed new methods to estimate the contribution of individual regulatory parts from just a few simple measurements. Our data show that different pairs of regulatory parts follow specific interaction rules affecting overall activity either positively or negatively. We find that while enhancers are the initiators of gene activity, core promoters modulate the levels of enhancer mediated expression. Cluster analysis based on expression show that TATA-box containing core promoters appear to increase enhancer-driven transcription to a greater extent than TATA-less promoters. Principal component analysis highlight outliers and suggest differences in mechanisms of regulation. These results provide a system to characterize regulatory elements and use these elements in the design of synthetic regulatory circuits.
0

Quantitative analysis of Histone modifications in gene silencing

Kenneth Wu et al.Nov 17, 2020
Abstract Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. This transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown and we developed a method to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state. We show that loss of silencing required between 50% and 75% of the unacetylated histones to be replaced with acetylated histone mimics. The precise levels of unacetylated nucleosomes required varied from locus to locus and was influenced by both silencer strength and UAS enhancer/promoter strength. Simple calculations suggest that an approximately 50% reduction in the ability of acetylases to acetylate individual nucleosomes across a large domain may be sufficient to generate a transcriptionally silent region in the nucleus.
1

Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration

Kenneth Wu et al.Oct 5, 2023
Abstract The interplay between nucleosomes and transcription factors leads to programs of gene expression. Transcriptional silencing involves the generation of a chromatin state that represses transcription and is faithfully propagated through DNA replication and cell division. Using multiple reporter assays, including directly visualizing transcription in single cells, we investigated a diverse set of UAS enhancers and core promoters for their susceptibility to heterochromatic gene silencing. These results show that heterochromatin only stably silences weak and stress induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements and the partial repression did not result in bistable expression states. Permutation analysis of different UAS enhancers and core promoters indicate that both elements function together to determine the susceptibility of regulatory sequences to repression. Specific histone modifiers and chromatin remodellers function in an enhancer specific manner to aid these elements to resist repression suggesting that Sir proteins likely function in part by reducing nucleosome mobility. We also show that the strong housekeeping regulatory elements can be repressed if silencer bound Sir1 is increased, suggesting that Sir1 is a limiting component in silencing. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating type gene regulatory elements but not strong housekeeping gene regulatory sequences which could help explain why these genes are often found at the boundaries of silenced domains.
0

Clarifying Mendelian vs non-Mendelian inheritance

Susan Strome et al.May 28, 2024
Abstract Gregor Mendel developed the principles of segregation and independent assortment in the mid-1800s based on his detailed analysis of several traits in pea plants. Those principles, now called Mendel's laws, in fact, explain the behavior of genes and alleles during meiosis and are now understood to underlie “Mendelian inheritance” of a wide range of traits and diseases across organisms. When asked to give examples of inheritance that do NOT follow Mendel's laws, in other words, examples of non-Mendelian inheritance, students sometimes list incomplete dominance, codominance, multiple alleles, sex-linked traits, and multigene traits and cite as their sources the Khan Academy, Wikipedia, and other online sites. Against this background, the goals of this Perspective are to (1) explain to students, healthcare workers, and other stakeholders why the examples above, in fact, display Mendelian inheritance, as they obey Mendel's laws of segregation and independent assortment, even though they do not produce classic Mendelian phenotypic ratios and (2) urge individuals with an intimate knowledge of genetic principles to monitor the accuracy of learning resources and work with us and those resources to correct information that is misleading.
0

Enabling community-based metrology for wood-degrading fungi

Rolando Perez et al.Oct 23, 2019
Lignocellulosic biomass could support a greatly-expanded bioeconomy. Current strategies for using biomass typically rely on single-cell organisms and extensive ancillary equipment to produce precursors for downstream manufacturing processes. Alternative forms of bioproduction based on solid-state fermentation and wood-degrading fungi can enable more direct means of manufacture. However, such practices are often ad hoc and not readily reproducible. We sought to develop standard reference strains, substrates, measurements, and methods sufficient to begin to enable reliable reuse of mycological materials and products. Specifically, we show that a widely-available and globally- regularized consumer product (PringlesTM) can support the growth of wood-degrading fungi, and that growth on PringlesTM can be correlated with growth on a fully-traceable and compositionally characterized substrate (NIST Reference Material 8492 Eastern Cottonwood Biomass). So established, five laboratories were able to compare measurements of wood-fungus performance via a simple radial extension growth rate assay. Reliable reuse of materials, measures, and methods is necessary to enable distributed bioproduction processes that can be adopted at all scales, from local to industrial.