RJ
Renata Jurkowska
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
2,496
h-index:
31
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cyclical DNA methylation of a transcriptionally active promoter

Raphaël Métivier et al.Mar 5, 2008
+11
R
R
R
0
Citation870
0
Save
0

Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation

Da Jia et al.Aug 22, 2007
+2
X
R
D
Genetic imprinting, found in flowering plants and placental mammals, uses DNA methylation to yield gene expression that is dependent on the parent of origin. DNA methyltransferase 3a (Dnmt3a) and its regulatory factor, DNA methyltransferase 3-like protein (Dnmt3L), are both required for the de novo DNA methylation of imprinted genes in mammalian germ cells. Dnmt3L interacts specifically with unmethylated lysine 4 of histone H3 through its amino-terminal PHD (plant homeodomain)-like domain. Here we show, with the use of crystallography, that the carboxy-terminal domain of human Dnmt3L interacts with the catalytic domain of Dnmt3a, demonstrating that Dnmt3L has dual functions of binding the unmethylated histone tail and activating DNA methyltransferase. The complexed C-terminal domains of Dnmt3a and Dnmt3L showed further dimerization through Dnmt3a-Dnmt3a interaction, forming a tetrameric complex with two active sites. Substitution of key non-catalytic residues at the Dnmt3a-Dnmt3L interface or the Dnmt3a-Dnmt3a interface eliminated enzymatic activity. Molecular modelling of a DNA-Dnmt3a dimer indicated that the two active sites are separated by about one DNA helical turn. The C-terminal domain of Dnmt3a oligomerizes on DNA to form a nucleoprotein filament. A periodicity in the activity of Dnmt3a on long DNA revealed a correlation of methylated CpG sites at distances of eight to ten base pairs, indicating that oligomerization leads Dnmt3a to methylate DNA in a periodic pattern. A similar periodicity is observed for the frequency of CpG sites in the differentially methylated regions of 12 maternally imprinted mouse genes. These results suggest a basis for the recognition and methylation of differentially methylated regions in imprinted genes, involving the detection of both nucleosome modification and CpG spacing.
0
Citation776
0
Save
0

The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation

Arunkumar Dhayalan et al.Jun 12, 2010
+4
P
A
A
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.
0

Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail

Yingying Zhang et al.Mar 11, 2010
+8
S
R
Y
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.
3

Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function

Mirunalini Ravichandran et al.Dec 30, 2021
+22
I
M
M
Abstract TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic cores of mammalian TET enzymes favor CpGs embedded within bHLH and bZIP transcription factor binding sites, with 250-fold preference in vitro . Crystal structures and molecular dynamics calculations show that sequence preference is caused by intra-substrate interactions and CpG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germline. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and OCT4, respectively, illuminating TET function in transcriptional responses and pluripotency support. One-Sentence Summary The catalytic domains of the enzymes that facilitate passive and drive active DNA demethylation have intrinsic sequence preferences that target DNA demethylation to bHLH and bZIP transcription factor binding sites.
3
Citation2
0
Save
7

Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctivede novoDNA methylation mechanisms

Linfeng Gao et al.Apr 29, 2020
+17
Y
M
L
Abstract Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals crucial and distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.
7
Citation1
0
Save
13

High-resolution transcriptomic and epigenetic profiling identifies novel regulators of COPD phenotypes in human lung fibroblasts

Uwe Schwartz et al.Mar 29, 2022
+29
M
S
U
Abstract Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering the environmental cause of COPD (e.g., cigarette smoke) and disease phenotypes, including stem-cell senescence and impaired differentiation, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) isolated from distal parenchyma of ex-smoker controls and COPD patients, with both mild and severe disease. The epigenetic landscape is markedly changed in lung fibroblasts across COPD stages, with DNA methylation changes occurring predominantly in regulatory regions, including promoters and enhancers. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Notably, we identified epigenetic and transcriptional dysregulation already in mild COPD patients, providing unique insights into early disease. Integration of profiling data identified 110 candidate regulators of disease phenotypes, including epigenetic factors. Using phenotypic screens, we verified the regulator capacity of multiple candidates and linked them to repair processes in the human lung. Our study provides first integrative high-resolution epigenetic and transcriptomic maps of human lung fibroblasts across stages of COPD. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic respiratory diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.
13
Citation1
0
Save
0

Versatile workflow for cell type resolved transcriptional and epigenetic profiles from cryopreserved human lung.

Maria Prada et al.Apr 3, 2020
+24
F
S
M
The complexity of the lung microenvironment together with changes in cellular composition during disease progression make it exceptionally hard to understand the molecular mechanisms leading to the development of chronic lung diseases. Although recent advances in cell type resolved and single-cell sequencing approaches hold great promise for studying complex diseases, their implementation greatly relies on local access to fresh tissue, as traditional methods to process and store tissue do not allow viable cell isolation. To overcome these hurdles, we developed a novel, versatile workflow that allows long-term storage of human lung tissue with high cell viability, permits thorough sample quality check before cell isolation, and is compatible with next generation sequencing-based profiling, including single-cell approaches. We demonstrate that cryopreservation is suitable for isolation of multiple cell types from different lung locations and is applicable to both healthy and diseased tissue, including COPD and tumor samples. Basal cells isolated from cryopreserved airways retain the ability to differentiate, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing (RNA-seq) and Illumina EPIC Array, we show that genome-wide gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for -omics profiling of human lung cells. In addition, we obtained high-quality single-cell RNA sequencing data of cells isolated from cryopreserved human lung, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our cryopreservation workflow is well-suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to human tissue.
7

Epigenetic deregulation of IFN and WNT pathways in AT2 cells impairs alveolar regeneration (in COPD)

Maria Prada et al.Jan 1, 2023
+24
S
D
M
Chronic lung diseases, including chronic obstructive pulmonary disease (COPD), affect over 500 million people and are a leading cause of death worldwide. A common feature of both chronic and acute lung diseases is altered respiratory barrier integrity and impaired lung regeneration. We hypothesized that alveolar type 2 (AT2) cells, as alveolar epithelial progenitors, will carry molecular alterations that compromise alveolar regeneration in COPD. Sorted AT2 cells from ex-smokers with and without COPD at different disease stages were subjected to RNA sequencing and whole-genome bisulfite sequencing to generate unbiased transcriptome and DNA methylation maps of alveolar progenitors in the lung. Our analysis revealed genome-wide epigenetic changes in AT2 cells during COPD that were associated with global gene expression changes. Integrative data analysis uncovered a strong anti-correlation between gene expression and promoter methylation, suggesting that dysregulation of COPD-associated pathways in AT2 cells may be regulated by DNA methylation. Interferon (IFN) signaling was the top-upregulated pathway associated with the concomitant loss of promoter DNA methylation. Epigenetic regulation of the IFN pathway was validated in both global and targeted DNA demethylation assays in A549 cells. Notably, targeted DNA demethylation of IRF9 triggered upregulation of IFN signaling, mimicking the effects observed in COPD AT2 cells in the profiling data. Our findings suggest that COPD-triggered epigenetic alterations in AT2 cells may impair internal regeneration programs in human lung parenchyma.