YM
Yutaka Mori
Author with expertise in Brain Fluid Dynamics and Waste Clearance Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
428
h-index:
31
/
i10-index:
78
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trigeminal ganglion neurons are directly activated by influx of CSF solutes in a migraine model

Martin Rasmussen et al.Jul 4, 2024
+12
P
K
M
Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene–related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.
1

Development of the entorhinal cortex occurs via parallel lamination during neurogenesis

Yong Liu et al.Feb 5, 2021
+10
J
T
Y
Abstract The entorhinal cortex (EC) is the spatial processing center of the brain and structurally is an interface between the three layered paleocortex and six layered neocortex, known as the periarchicortex. Limited studies indicate peculiarities in the formation of the EC such as early emergence of cells in layers (L) II and late deposition of LIII, as well as divergence in the timing of maturation of cell types in the superficial layers. In this study, we examine developmental events in the entorhinal cortex using an understudied model in neuroanatomy and development, the pig and supplement the research with BrdU labeling in the developing mouse EC. We determine the pig serves as an excellent anatomical model for studying human neurogenesis, given its long gestational length, presence of a moderate sized outer subventricular zone and early cessation of neurogenesis during gestation. Immunohistochemistry identified prominent clusters of OLIG2+ oligoprogenitor-like cells in the superficial layers of the lateral EC (LEC) that are sparser in the medial EC (MEC). These are first detected in the subplate during the early second semester. MRI analyses reveal an acceleration of EC growth at the end of the second trimester. BrdU labeling of the developing MEC, shows the deeper layers form first and prior to the superficial layers, but the LV/VI emerges in parallel and the LII/III emerges later, but also in parallel. We coin this lamination pattern parallel lamination. The early-born Reln+ stellate cells in the superficial layers express the classic LV marker, Bcl11b (Ctip2) and arise from a common progenitor that forms the late deep layer LV neurons. In summary, we characterize the developing EC in a novel animal model and outline in detail the formation of the EC. We further provide insight into how the periarchicortex forms in the brain, which differs remarkably to the inside-out lamination of the neocortex.
1
Citation1
0
Save
0

Glymphatic clearance is enhanced during sleep

Erik Kroesbergen et al.Aug 26, 2024
+9
R
L
E
We here revisited the concept that glymphatic clearance is enhanced by sleep and anesthesia. Utilizing dynamic magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and fluorescent fiber photometry, we report brain glymphatic clearance is enhanced by both sleep and anesthesia, and sharply suppressed by wakefulness. Another key finding was that less tracer enters the brains of awake animals and that brain clearance across different brain states can only be compared after adjusting for the injected tracer dose.
0

Structural characterization of SLYM - a 4thmeningeal membrane

Virginia Plá et al.Oct 23, 2023
+6
M
S
V
Abstract Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4 th meningeal membrane, S ubarachnoid Ly mphatic-like M embrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.
0

Cerebrospinal fluid influx drives acute ischemic tissue swelling

Humberto Mestre et al.Jan 30, 2020
+20
A
T
H
Stroke affects millions each year. Post-stroke brain edema predicts the severity of eventual stroke damage, yet our concept of how edema develops is incomplete and treatment options remain limited. In early stages, fluid accumulation occurs owing to a net gain of ions, widely thought to enter from the vascular compartment. Here we used magnetic resonance imaging, radiolabeled tracers, and multiphoton imaging in rodents, to show instead that cerebrospinal fluid surrounding the brain enters the tissue within minutes of an ischemic insult along perivascular flow channels. This process was initiated by ischemic spreading depolarizations along with subsequent vasoconstriction, which in turn enlarged the perivascular spaces and doubled glymphatic inflow speeds. Thus, our understanding of post-stroke edema needs to be revised and these findings could provide a conceptual basis for development of alternative treatment strategies.
6

A fourth meningeal layer? A barrier for 3kDa solutes dividing the subarachnoid space

Kjeld Møllgård et al.Jan 6, 2023
+9
P
F
K
The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater. We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells. Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations. The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport. , An extra layer lines the brain The traditional view is that the brain is surrounded by three layers, the dura, arachnoid, and pia mater. Møllgård et al . found a fourth meningeal layer called the subarachnoid lymphatic-like membrane (SLYM). SLYM is immunophenotypically distinct from the other meningeal layers in the human and mouse brain and represents a tight barrier for solutes of more than 3 kilodaltons, effectively subdividing the subarachnoid space into two different compartments. SLYM is the host for a large population of myeloid cells, the number of which increases in response to inflammation and aging, so this layer represents an innate immune niche ideally positioned to surveil the cerebrospinal fluid. —SMH , A fourth meningeal layer acts as a barrier that divides the subarachnoid space into two distinct compartments.
4

Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation

Ryszard Gomolka et al.Jul 29, 2022
+10
H
L
R
ABSTRACT The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion scores and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to stagnation of ISF movement and enlargement of the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
0

Off-camera gaze decreases evaluation scores in a simulated online job interview

Masahiro Shinya et al.May 31, 2024
B
Y
N
M
Abstract During the pandemic, digital communication became paramount. Due to the discrepancy between the placement of the camera and the screen in typical smartphones, tablets and laptops, mutual eye contact cannot be made in standard video communication. Although the positive effect of eye contact in traditional communication has been well-documented, its role in virtual contexts remains less explored. In this study, we conducted experiments to gauge the impact of gaze direction during a simulated online job interview. Twelve university students were recruited as interviewees. The interview consisted of two recording sessions where they delivered the same prepared speech: in the first session, they faced the camera, and in the second, they directed their gaze towards the screen. Based on the recorded videos, we created three stimuli: one where the interviewee’s gaze was directed at the camera (CAM), one where the interviewee’s gaze was skewed downward (SKW), and a voice-only stimulus without camera recordings (VO). Thirty-eight full-time workers participated in the study and evaluated the stimuli. The results revealed that the SKW condition garnered significantly less favorable evaluations than the CAM condition and the VO condition. Moreover, a secondary analysis indicated a potential gender bias in evaluations: the female evaluators evaluated the interviewees of SKW condition more harshly than the male evaluators did, and the difference in some evaluation criteria between the CAM and SKW conditions was larger for the female interviewees than for the male interviewees. Our findings emphasize the significance of gaze direction and potential gender biases in online interactions.