Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
ST
Shreeti Thapa
Author with expertise in Glycosylation in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Decreased fucosylation impacts epithelial integrity and increases risk for COPD.

Carter Swaby et al.Jan 1, 2023
COPD causes significant morbidity and mortality worldwide. Epithelial damage is fundamental to disease pathogenesis, although the mechanisms driving disease remain undefined. Published evidence from a COPD cohort (SPIROMICS) and confirmed in a second cohort (COPDgene) demonstrate a polymorphism in Fucosyltransferese-2 (FUT2) is a trans-pQTL for E-cadherin, which is critical in COPD pathogenesis. We found by MALDI-TOF analysis that FUT2 increased terminal fucosylation of E-cadherin. Using atomic force microscopy, we found that FUT2-dependent fucosylation enhanced E-cadherin-E-cadherin bond strength, mediating the improvement in monolayer integrity. Tracheal epithelial cells from Fut2-/- mice have reduced epithelial integrity, which is recovered with reconstitution of Fut2. Overexpression of FUT2 in COPD derived epithelia rescues barrier function. Fut2-/- mice show increased susceptibility in an elastase model of disease developing both emphysema and fibrosis. We propose this is due to the role of FUT2 in proliferation and cell differentiation. Overexpression of FUT2 significantly increased proliferation. Loss of Fut2 results in accumulation of Spc+ cells suggesting a failure of alveolar type 2 cells to undergo transdifferentiation to alveolar type 1. Using a combination of population data, genetically manipulated mouse models, and patient-derived cells, we present a novel mechanism by which post-translational modifications modulate tissue pathology and serve as a proof of concept for the development of a disease-modifying target in COPD.
1

Knockout of E-cadherin in adult mouse epithelium results in emphysema and airway disease

Baishakhi Ghosh et al.Jul 18, 2021
Abstract Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, characterized by a progressive decline in lung function, alveolar loss (emphysema), and airflow limitation due to excessive mucus secretion (chronic bronchitis), that can occur even after the injurious agent is removed. It is slated to rise to the 3 rd leading cause of death due to chronic disease by 2030 globally, and the 4 th leading cause of death due to chronic disease in the USA. While there is substantial evidence indicating loss of E-cadherin in the lung epithelium of patients with COPD, it is not known if this is causal to the disease. We investigated if loss of E-cadherin can result in lung disease using in both in vitro models of primary, differentiated human cells and in mouse models. Using a cell type-specific promoter using Cre/LoxP mice system to knock-out E- cadherin in ciliated and alveolar epithelial cell (Type 1 and Type 2) populations in adult mouse models, we determined that loss of E-cadherin caused airspace enlargement, as well as increased airway hyperresponsiveness indicating that it does have a causative role in causing COPD. Strategies to upregulate CDH1 (encodes for E-cadherin) in CHBEs and cigarette-smoke injured NHBEs can rescue the dysfunctional epithelium.