MP
Matthew Prideaux
Author with expertise in Fibroblast Growth Factor Signaling Pathway
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
22
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deletion of FNDC5/Irisin modifies murine osteocyte function in a sex-specific manner

Anika Shimonty et al.Jan 1, 2023
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (KO), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, the KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism compared to WT females. Few differences were observed between female KO and WT mice, but with a low calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
1

Generation of two Multipotent Mesenchymal Progenitor Cell Lines Capable of Osteogenic, Mature Osteocyte, Adipogenic, and Chondrogenic Differentiation

Matthew Prideaux et al.Nov 19, 2020
Abstract Differentiation of multi-potent mesenchymal progenitor cells give rise to several tissue types including bone, cartilage, and adipose. In addition to the complication arising from the numerous spatial, temporal, and hormonal factors that regulate lineage allocation, targeting of these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study both tissue development and the differentiated cell types. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion can be problematic. As such, we have developed two novel mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, which were generated from the bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cell lines are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions both cell lines formed discrete mineralized nodules, staining for alizarin red and alkaline phosphatase, while expressing high levels of osteogenic genes including Sost , Fgf23 , and Dmp1 . Sost and Dmp1 mRNA levels were drastically reduced with parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted both the intact (iFGF23) and C -terminal (cFGF23) forms of endocrine hormone FGF23, which was upregulated in the presence of 1,25 dihydroxy vitamin D (1,25D). In addition to osteogenic differentiation, both cell lines also rapidly entered the adipogenic lineage, expressing several adipose markers after only 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of common cartilage genes including aggrecan, sox9, and cartilage oligomeric matrix protein. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.
3

Sclerostin directly stimulates osteocyte synthesis of fibroblast growth factor-23

Nobuaki Ito et al.Oct 29, 2020
Abstract Osteocyte produced fibroblast growth factor 23 (FGF23) is the key regulator of serum phosphate (Pi) homeostasis. The interplay between parathyroid hormone (PTH), FGF23 and other proteins that regulate FGF23 production and serum Pi levels is complex and incompletely characterised. Evidence suggests that the protein product of the SOST gene, sclerostin (SCL), also a PTH target and also produced by osteocytes, plays a role in FGF23 expression, however the mechanism for this effect is unclear. Part of the problem of understanding the interplay of these mediators is the complex multi-organ system that achieves Pi homeostasis in vivo . In the current study, we sought to address this using a unique cell line model of the osteocyte, IDG-SW3, known to express FGF23 at both the mRNA and protein levels. In cultures of differentiated IDG-SW3 cells, both PTH 1-34 and recombinant human (rh) SCL remarkably induced Fgf23 mRNA expression dose-dependently within 3 hours. Both rhPTH 1-34 and rhSCL also strongly induced C-terminal FGF23 protein secretion. Secreted intact FGF23 levels remained unchanged, consistent with constitutive post-translational cleavage of FGF23 in this cell model. Both rhPTH 1-34 and rhSCL treatments significantly suppressed mRNA levels of Phex, Dmp1 and Enpp1 mRNA, encoding putative negative regulators of FGF23 levels, and induced Galnt3 mRNA expression, encoding N-acetylgalactosaminyl-transferase 3 (GalNAc-T3), which protects FGF23 from furin-like proprotein convertase-mediated cleavage. The effect of both rhPTH 1-34 and rhSCL was antagonised by pre-treatment with the NF-κβ signalling inhibitors, BAY11 and TPCK. RhSCL also stimulated FGF23 mRNA expression in ex vivo cultures of human bone. These findings provide evidence for the direct regulation of FGF23 expression by sclerostin. Locally expressed sclerostin via the induction of FGF23 in osteocytes thus has the potential to contribute to the regulation of Pi homeostasis.