ES
Eric Schnell
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(60% Open Access)
Cited by:
3,799
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology

Michael Hasselmo et al.Jun 1, 1994
ACh may set the dynamics of cortical function to those appropriate for learning new information. In models of the putative associative memory function of piriform cortex, selective suppression of intrinsic but not afferent fiber synaptic transmission by ACh prevents recall of previous input from interfering with the learning of new input (Hasselmo, 1993). Selective cholinergic suppression may play a similar role in the hippocampal formation, where Schaffer collateral synapses in stratum radiatum (s. rad) may store associations between activity in region CA3 and the entorhinal cortex input to region CA1 terminating in stratum lacunosum-moleculare (s. l-m). A computational model of region CA1 predicts that for effective associative memory function of the Schaffer collaterals, cholinergic suppression of synaptic transmission should be stronger in s. rad than in s. l-m. In the hippocampal slice preparation, we tested the effect of the cholinergic agonist carbachol (0.01–500 microM) on synaptic transmission in s. rad and s. l-m. Stimulating and recording electrodes were simultaneously placed in both layers, allowing analysis of the effect of carbachol on synaptic potentials in both layers during the same perfusion in each slice. Carbachol produced a significantly stronger suppression of stimulus- evoked EPSPs in s. rad than in s. l-m at all concentrations greater than 1 microM. At 100 microM, EPSP initial slopes were suppressed by 89.1 +/- 3.0% in s. rad, but only by 40.1 +/- 4.1% in s. l-m. The muscarinic antagonist atropine (1 microM) blocked cholinergic suppression in both layers. These data support the hypothesis that synaptic modification of the Schaffer collaterals may store associations between activity in region CA3 and the afferent input to region CA1 from the entorhinal cortex. In simulations, feedback regulation of cholinergic modulation based on activity in region CA1 sets the appropriate dynamics of learning for novel associations, and recall for familiar associations.
0

The Role of Brain-Derived Neurotrophic Factor Receptors in the Mature Hippocampus: Modulation of Long-Term Potentiation through a Presynaptic Mechanism involving TrkB

Baoji Xu et al.Sep 15, 2000
The neurotrophin BDNF has been shown to modulate long-term potentiation (LTP) at Schaffer collateral-CA1 hippocampal synapses. Mutants in the BDNF receptor gene trkB and antibodies to its second receptor p75NTR have been used to determine the receptors and cells involved in this response. Inhibition of p75NTR does not detectably reduce LTP or affect presynaptic function, but analyses of newly generated trkB mutants implicate TrkB. One mutant has reduced expression in a normal pattern of TrkB throughout the brain. The second mutant was created by cre-loxP-mediated removal of TrkB in CA1 pyramidal neurons of this mouse. Neither mutant detectably impacts survival or morphology of hippocampal neurons. TrkB reduction, however, affects presynaptic function and reduces the ability of tetanic stimulation to induce LTP. Postsynaptic glutamate receptors are not affected by TrkB reduction, indicating that BDNF does not modulate plasticity through postsynaptic TrkB. Consistent with this, elimination of TrkB in postsynaptic neurons does not affect LTP. Moreover, normal LTP is generated in the mutant with reduced TrkB by a depolarization-low-frequency stimulation pairing protocol that puts minimal demands on presynaptic terminal function. Thus, BDNF appears to act through TrkB presynaptically, but not postsynaptically, to modulate LTP.
27

Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy

Jennifer Jahncke et al.Jan 26, 2022
ABSTRACT Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2 , which is required for Dystroglycan glycosylation, show significant impairment of CCK + /CB1R + IN development. CCK + /CB1R + IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK + /CB1R + IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK + /CB1R + IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
27
Citation1
0
Save
11

α2δ-2 is Required for Depolarization-induced Suppression of Excitation in Purkinje cells

Kathleen Beeson et al.Mar 26, 2021
Abstract α2δ proteins ( CACNA2D1-4 ) are required for normal neurological function, although how they control neuronal output remains unclear. Using whole-cell recordings of mouse Purkinje cells, we show α2δ-2 is required for functional coupling of postsynaptic voltage-dependent calcium entry with effector mechanisms controlling two different outputs, depolarization-induced suppression of excitation mediated by endocannabinoid signaling, and spike afterhyperpolarization generated by calcium-dependent potassium channels. Our findings indicate an important role for α2δ-2 proteins in regulating functional postsynaptic calcium channel-coupling in neurons. Significance Statement Calcium influx via membrane voltage-dependent calcium channels drives numerous neuronal processes by signaling through calcium-dependent effector molecules. Signal precision is achieved in part by calcium channel-effector coupling. In mouse Purkinje cell neurons, we show that neuronal α2δ-2 protein functionally couples calcium entry to two different postsynaptic calcium-dependent signals, retrograde endocannabinoid signaling and the action potential afterhyperpolarization. Our findings provide new insights about the control of calcium channel-effector coupling as well as new roles for α2δ-2 proteins in neurons.
0

α2δ-2 protein controls structure and function at the cerebellar climbing fiber synapse

Kathleen Beeson et al.Jun 28, 2019
α2δ proteins ( Cacna2d1-4 ) are auxiliary subunits of voltage-dependent calcium channels that also drive synapse formation and maturation. Because cerebellar Purkinje cells (PCs) only express one isoform of this family, α2δ-2 ( Cacna2d2 ), we used PCs as a model system to examine roles of α2δ in excitatory synaptic function in a Cacna2d2 knockout mouse. Whole-cell recordings of PCs from acute cerebellar slices revealed altered climbing fiber (CF)-evoked complex spike generation, as well as increased amplitude and faster decay of CF-evoked excitatory postsynaptic currents (EPSCs). CF terminals in the KO were localized more proximally on PC dendrites, as indicated by VGLUT2+ immunoreactive puncta, and computational modeling demonstrated that the increased EPSC amplitude can be partly attributed to the more proximal location of CF terminals. In addition, CFs in KO mice exhibited increased multivesicular transmission, corresponding to greater sustained responses during repetitive stimulation, despite a reduction in the measured probability of release. Electron microscopy demonstrated that mutant CF terminals had twice as many vesicle release sites, providing a morphologic explanation for the enhanced glutamate release. Though KO CFs evoked larger amplitude EPSCs, the charge transfer was the same as wildtype as a result of increased glutamate re-uptake, producing faster decay kinetics. Together, the larger, faster EPSCs in the KO explain the altered complex spike responses, which degrade information transfer from PCs and likely contribute to ataxia in Cacna2d2 KO mice. Our results also illustrate the multidimensional synaptic roles of α2δ proteins.Significance Statement α2δ proteins ( Cacna2d1-4 ) regulate synaptic transmission and synaptogenesis, but co-expression of multiple α2δ isoforms has obscured a clear understanding of how various α2δ proteins control synaptic function. We focused on roles of the α2δ-2 protein ( Cacna2d2 ), whose deletion causes cerebellar ataxia and epilepsy in mice and humans. Because cerebellar Purkinje cells only expresses this single isoform, we studied excitatory climbing fiber synaptic function onto Purkinje cells in Cacna2d2 knockout mice. Using optical and electrophysiological analysis, we provide a detailed description of the changes in Purkinje cells lacking α2δ-2, and provide a comprehensive mechanistic explanation for how functional synaptic phenotypes contribute to the altered cerebellar output.
Load More