CB
Catarina Bourgard
Author with expertise in Polyamines and Biogenic Amines in Biology and Health
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

A genetic trap in yeast for inhibitors of SARS-CoV-2 main protease

Hanna Alalam et al.Sep 16, 2021
+5
C
S
H
ABSTRACT The ongoing COVID-19 pandemic urges searches for antiviral agents that can block infection or ameliorate its symptoms. Using dissimilar search strategies for new antivirals will improve our overall chances of finding effective treatments. Here, we have established an experimental platform for screening of small molecule inhibitors of SARS-CoV-2 main protease in Saccharomyces cerevisiae cells, genetically engineered to enhance cellular uptake of small molecules in the environment. The system consists of a fusion of the E. coli toxin MazF and its antitoxin MazE, with insertion of a protease cleavage site in the linker peptide connecting the MazE and MazF moieties. Expression of the viral protease confers cleavage of the MazEF fusion, releasing the MazF toxin from its antitoxin, resulting in growth inhibition. In the presence of a small molecule inhibiting the protease, cleavage is blocked and the MazF toxin remains inhibited, promoting growth. The system thus allows positive selection for inhibitors. The engineered yeast strain is tagged with a fluorescent marker protein, allowing precise monitoring of its growth in the presence or absence of inhibitor. We detect an established main protease inhibitor down to 10 μM by a robust growth increase. The system is suitable for robotized large-scale screens. It allows in vivo evaluation of drug candidates, and is rapidly adaptable for new variants of the protease with deviant site specificities. IMPORTANCE The COVID-19 pandemic may continue several years before vaccination campaigns can put an end it globally. Thus, the need for discovery of new antiviral drug candidates will remain. We have engineered a system in yeast cells for detection of small molecule inhibitors of one attractive drug target of SARS-CoV-2, its main protease which is required for viral replication. To detect inhibitors in live cells brings the advantage that only compounds capable of entering the cell and remain stable there, will score in the system. Moreover, by its design in yeast, the system is rapidly adaptable for tuning of detection level, eventual modification of protease cleavage site in case of future mutant variants of the SARS-CoV-2 main protease, or even for other proteases.
8
Citation1
0
Save
0

An experimental target-based platform in yeast for screening Plasmodium vivax deoxyhypusine synthase inhibitors

Suélen Silva et al.Jan 1, 2023
+12
S
A
S
The enzyme deoxyhypusine synthase (DHS) catalyzes the first step in the post-translational modification of the eukaryotic translation factor 5A (eIF5A). This is the only protein known to contain the amino acid hypusine, which results from this modification. Both eIF5A and DHS are essential for cell viability in eukaryotes, and inhibiting DHS can be a promising strategy for the development of new therapeutic alternatives. The human and parasitic orthologous proteins are different enough to render selective targeting against infectious diseases; however, no DHS inhibitor selective for the parasite ortholog has previously been reported. Here, we established a yeast surrogate genetics platform to identify inhibitors of DHS from Plasmodium vivax, one of the major causative agents of malaria. We constructed genetically modified Saccharomyces cerevisiae strains expressing DHS genes from Homo sapiens (HsDHS) or P. vivax (PvDHS) in place of the endogenous DHS gene from S. cerevisiae. This new strain background was ~60-fold more sensitive to an inhibitor of human DHS than the one previously used. Initially, a virtual screen using datasets from the ChEMBL-NTD database was performed. Candidate ligands were tested in growth assays using the newly generated yeast strains expressing heterologous DHS genes. Among these, two showed promise by preferentially reducing the growth of the PvDHS-expressing strain. Further, in a robotized assay, we screened 400 compounds from the Pathogen Box library using the same S. cerevisiae strains, and one compound preferentially reduced the growth of the PvDHS-expressing yeast strain. Western blot revealed that these compounds significantly reduced eIF5A hypusination in yeast. Our study demonstrates that this yeast-based platform is suitable for identifying and verifying candidate small molecule DHS inhibitors, selective for the parasite over the human ortholog.