BS
Bridgette Semple
Author with expertise in Management and Pathophysiology of Traumatic Brain Injury
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
579
h-index:
34
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Role of CCL2 (MCP-1) in Traumatic Brain Injury (TBI): Evidence from Severe TBI Patients and CCL2−/− Mice

Bridgette Semple et al.Dec 23, 2009
Cerebral inflammation involves molecular cascades contributing to progressive damage after traumatic brain injury (TBI). The chemokine CC ligand-2 (CCL2) (formerly monocyte chemoattractant protein-1, MCP-1) is implicated in macrophage recruitment into damaged parenchyma after TBI. This study analyzed the presence of CCL2 in human TBI, and further investigated the role of CCL2 in physiological and cellular mechanisms of secondary brain damage after TBI. Sustained elevation of CCL2 was detected in the cerebrospinal fluid (CSF) of severe TBI patients for 10 days after trauma, and in cortical homogenates of C57Bl/6 mice, peaking at 4 to 12 h after closed head injury (CHI). Neurological outcome, lesion volume, macrophage/microglia infiltration, astrogliosis, and the cerebral cytokine network were thus examined in CCL2-deficient (-/-) mice subjected to CHI. We found that CCL2-/- mice showed altered production of multiple cytokines acutely (2 to 24 h); however, this did not affect lesion size or cell death within the first week after CHI. In contrast, by 2 and 4 weeks, a delayed reduction in lesion volume, macrophage accumulation, and astrogliosis were observed in the injured cortex and ipsilateral thalamus of CCL2-/- mice, corresponding to improved functional recovery as compared with wild-type mice after CHI. Our findings confirm the significant role of CCL2 in mediating post-traumatic secondary brain damage.
5

Localized, time-dependent responses of rat cranial bone to repeated mild traumatic brain injuries

Larissa Dill et al.Dec 13, 2021
ABSTRACT While it is well-established that bone responds dynamically to mechanical loading, the effects of mild traumatic brain injury (mTBI) on cranial bone composition are unclear. We hypothesized that repeated mTBI (rmTBI) would change the microstructure of cranial bones, without gross skull fractures. To address this, young adult female Piebald Viral Glaxo rats received sham, 1x, 2x or 3x closed-head mTBIs delivered at 24h intervals, using a weight-drop device custom built for reproducible impact. Skull bones were collected at 2 or 10 weeks after the final injury/sham procedure, imaged by micro computed tomography and analyzed at predetermined regions of interest. In the interparietal bone, proximal to the injury site, modest increases in bone thickness was observed at 2 weeks, particularly following 3x mTBI. By 10 weeks, 2x mTBI induced a robust increase in the volume and thickness of the interparietal bone, alongside a corresponding decrease in the volume of marrow cavities in the diploë region. In contrast, neither parietal nor frontal skull samples were affected by rmTBI. Our findings demonstrate time- and location-dependent effects of rmTBI on cranial bone structure, highlighting a need to consider microstructural alterations to cranial bone when assessing the consequences of rmTBI.
5
Citation2
0
Save
0

Translating from mice to humans: using preclinical blood-based biomarkers for the prognosis and treatment of traumatic brain injury

Ilaria Lisi et al.Jan 1, 2023
Rodent models are important research tools for studying the pathophysiology of traumatic brain injury (TBI) and developing potential new therapeutic interventions for this devastating neurological disorder. However, the failure rate for the translation of drugs from animal testing to human treatments for TBI is 100%, perhaps due, in part, to distinct timescales of pathophysiological processes in rodents versus humans that impedes translational advancements. Incorporating clinically relevant biomarkers in preclinical studies may provide an opportunity to calibrate preclinical models to human TBI biomechanics and pathophysiology. To support this important translational goal, we conducted a systematic literature review of preclinical TBI studies in rodents measuring blood levels of clinically used NfL, t-Tau, p-Tau, UCH-L1, or GFAP, published in PubMed/MEDLINE up to June 13th, 2023. We focused on blood biomarker temporal trajectories and their predictive and pharmacodynamic value and discuss our findings in the context of the latest clinical TBI biomarker data. Out of 369 original studies identified through the literature search, 71 met the inclusion criteria, with a median quality score on the CAMARADES checklist of 5 (interquartile range 4-7). NfL was measured in 17 preclinical studies, GFAP in 41, t-Tau in 17, p-Tau in 7, and UCH-L1 in 19 preclinical studies. Data in rodent models show that all blood biomarkers exhibited injury severity-dependent elevations, with GFAP and UCH-L1 peaking within hours after TBI, NfL peaking within days after TBI and remaining elevated up to 6 months post-injury, whereas t-Tau and p-Tau levels were gradually increased many weeks after TBI. Blood NfL levels emerges as a prognostic indicator of white matter loss after TBI, while both NfL and GFAP hold promise for pharmacodynamic studies of neuroprotective treatments. Therefore, blood-based preclinical biomarker trajectories could serve as important anchor points that may advance translational research in the TBI field. However, further investigation into biomarker levels in the subacute and chronic phases will be needed to more clearly define pathophysiological mechanisms and identify new therapeutic targets for TBI.
0

Dynamics of synaptic damage in severe traumatic brain injury revealed by cerebrospinal fluid SNAP-25 and VILIP-1

Florian Heuvel et al.Jun 2, 2024
Background Biomarkers of neuronal, glial cells and inflammation in traumatic brain injury (TBI) are available but they do not specifically reflect the damage to synapses, which represent the bulk volume of the brain. Experimental models have demonstrated extensive involvement of synapses in acute TBI, but biomarkers of synaptic damage in human patients have not been explored. Methods Single-molecule array assays were used to measure synaptosomal-associated protein-25 (SNAP-25) and visinin-like protein 1 (VILIP-1) (along with neurofilament light chain (NFL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillar acidic protein (GFAP), interleukin-6 (IL-6) and interleukin-8 (IL-8)) in ventricular cerebrospinal fluid (CSF) samples longitudinally acquired during the intensive care unit (ICU) stay of 42 patients with severe TBI or 22 uninjured controls. Results CSF levels of SNAP-25 and VILIP-1 are strongly elevated early after severe TBI and decline in the first few days. SNAP-25 and VILIP-1 correlate with inflammatory markers at two distinct timepoints (around D1 and then again at D5) in follow-up. SNAP-25 and VILIP-1 on the day-of-injury have better sensitivity and specificity for unfavourable outcome at 6 months than NFL, UCH-L1 or GFAP. Later elevation of SNAP-25 was associated with poorer outcome. Conclusion Synaptic damage markers are acutely elevated in severe TBI and predict long-term outcomes, as well as, or better than, markers of neuroaxonal injury. Synaptic damage correlates with initial injury and with a later phase of secondary inflammatory injury.