IH
Ilse Hurbain
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
845
h-index:
34
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling

Frederik Verweij et al.Jan 16, 2018
Exosomes are small endosome-derived extracellular vesicles implicated in cell–cell communication and are secreted by living cells when multivesicular bodies (MVBs) fuse with the plasma membrane (PM). Current techniques to study exosome physiology are based on isolation procedures after secretion, precluding direct and dynamic insight into the mechanics of exosome biogenesis and the regulation of their release. In this study, we propose real-time visualization of MVB–PM fusion to overcome these limitations. We designed tetraspanin-based pH-sensitive optical reporters that detect MVB–PM fusion using live total internal reflection fluorescence and dynamic correlative light–electron microscopy. Quantitative analysis demonstrates that MVB–PM fusion frequency is reduced by depleting the target membrane SNAREs SNAP23 and syntaxin-4 but also can be induced in single cells by stimulation of the histamine H1 receptor (H1HR). Interestingly, activation of H1R1 in HeLa cells increases Ser110 phosphorylation of SNAP23, promoting MVB–PM fusion and the release of CD63-enriched exosomes. Using this single-cell resolution approach, we highlight the modulatory dynamics of MVB exocytosis that will help to increase our understanding of exosome physiology and identify druggable targets in exosome-associated pathologies.
0
Citation284
0
Save
0

PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers

Géraldine Gentric et al.Sep 20, 2018
High-grade serous ovarian cancer (HGSOC) remains an unmet medical challenge. Here, we unravel an unanticipated metabolic heterogeneity in HGSOC. By combining proteomic, metabolomic, and bioergenetic analyses, we identify two molecular subgroups, low- and high-OXPHOS. While low-OXPHOS exhibit a glycolytic metabolism, high-OXPHOS HGSOCs rely on oxidative phosphorylation, supported by glutamine and fatty acid oxidation, and show chronic oxidative stress. We identify an important role for the PML-PGC-1α axis in the metabolic features of high-OXPHOS HGSOC. In high-OXPHOS tumors, chronic oxidative stress promotes aggregation of PML-nuclear bodies, resulting in activation of the transcriptional co-activator PGC-1α. Active PGC-1α increases synthesis of electron transport chain complexes, thereby promoting mitochondrial respiration. Importantly, high-OXPHOS HGSOCs exhibit increased response to conventional chemotherapies, in which increased oxidative stress, PML, and potentially ferroptosis play key functions. Collectively, our data establish a stress-mediated PML-PGC-1α-dependent mechanism that promotes OXPHOS metabolism and chemosensitivity in ovarian cancer.
1

Microvilli-derived Extracellular Vesicles Govern Morphogenesis in Drosophila wing epithelium

Ilse Hurbain et al.Nov 2, 2020
ABSTRACT The regulation and coordination of developmental processes involves the secretion of morphogens and membrane carriers, including extracellular vesicles, which facilitate their transport over long distance. The long-range activity of the Hedgehog morphogen is conveyed by extracellular vesicles. However, the site and the molecular basis of their biogenesis remains unknown. By combining fluorescence and electron microscopy combined with genetics and cell biology approaches, we investigated the origin and the cellular mechanisms underlying extracellular vesicle biogenesis, and their contribution to Drosophila wing disc development, exploiting Hedgehog as a long-range morphogen. We show that microvilli of Drosophila wing disc epithelium are the site of generation of small extracellular vesicles that transport Hedgehog across the tissue. This process requires the Prominin-like protein, whose activity, together with interacting cytoskeleton components and lipids, is critical for maintaining microvilli integrity and function in secretion. Our results provide the first evidence that microvilli-derived extracellular vesicles contribute to Hedgehog long-range signaling activity highlighting their physiological significance in tissue development in vivo .
1
Citation2
0
Save
0

Extracellular vesicles released by keratinocytes regulate melanosome maturation, melanocyte dendricity and pigment transfer

Marie‐Thérèse Prosperi et al.Dec 8, 2023
ABSTRACT Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids and genetic material molecules between cells, and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthetize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes (Lo Cicero et al., Nat. Comm. 2015). However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites, mature melanosomes and their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulate pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors of cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication. SIGNIFICANCE STATEMENT Our work uncovers how keratinocyte-derived EVs control melanocyte physiology and functions. By promoting the growth of melanocyte dendrites, maturation, accumulation and peripheral positioning of pigmented melanosomes within the dendrites, and transfer of melanin to keratinocytes, EVs released by keratinocytes control crucial processes in skin photo protection. Importantly, given that dysregulation of these pathways could underlie pigment disorders, melanoma or skin carcinoma, our results open avenues to exploit keratinocyte EVs as tools for the design of new therapies to enhance the ability of melanocytes to provide skin photoprotection, and thus decrease the incidence pigmentary disorders and skin cancers.
1

Human Cytomegalovirus modifies placental small extracellular vesicle secretion and composition towards a proviral phenotype to enhance infection of fetal recipient cells

Mathilde Bergamelli et al.Nov 19, 2021
Abstract Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pregnancy, little is known about their role during human cytomegalovirus (hCMV) congenital infection, especially at the beginning of pregnancy. In this study, we examined the consequences of hCMV infection on sEVs production, composition and function using an immortalized human cytotrophoblast cell line derived from first trimester placenta. By combining complementary approaches of biochemistry, electron microscopy and quantitative proteomic analysis, we showed that hCMV infection increases the yield of sEVs produced by cytotrophoblasts and modifies their protein content towards a proviral phenotype. We further demonstrate that sEVs secreted by hCMV-infected cytotrophoblasts potentiate infection in naive recipient cells of fetal origin, including human neural stem cells. Importantly, these functional consequences are also observed with sEVs prepared from either an ex vivo model of infected histocultures from early placenta or from the amniotic fluid of patients naturally infected by hCMV at the beginning of pregnancy. Based on these findings, we propose that placental sEVs could be key actors favoring viral dissemination to the fetal brain during hCMV congenital infection. Significance Statement Human cytomegalovirus (hCMV) infection is a major issue during pregnancy, affecting 1% of births in western countries. Despite extensive research, the pathophysiology of this congenital infection remains unclear. Recently, increasing evidence point to the key role of placental small extracellular vesicles (sEVs) in materno-fetal communication during pregnancy. Here, we examined the impact of hCMV infection on the protein composition and function of placental sEVs. We observe that hCMV infection leads to major changes in placental sEV protein content. Functional studies show the ability of sEVs produced by placental infected cells to facilitate further infection of naive recipient fetal cells, notably human neural stem cells. Our study demonstrates that placental sEVs are key players of hCMV pathophysiology during congenital infection.
0

Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments

Florent Figon et al.Feb 22, 2021
Abstract Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and, second, how their catabolism is intracellularly processed. Using scanning-transmission electron microscopy, electron tomography and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
0

Caveolae coupling of melanocytes signaling and mechanics is required for human skin pigmentation

Lia Domingues et al.Jun 10, 2019
Tissue homeostasis requires regulation of cell-cell communication, which relies on signaling molecules and cell contacts. In skin epidermis, keratinocytes secrete specific factors transduced by melanocytes into signaling cues to promote their pigmentation and dendrite outgrowth, while melanocytes transfer melanin pigments to keratinocytes to convey skin photoprotection. How epidermal cells integrate these functions remains poorly characterized. Here, we found that caveolae polarize in melanocytes and are particularly abundant at melanocyte-keratinocyte interface. Caveolae in melanocytes are sensitive to ultra-violet radiations and miRNAs released by keratinocytes. Preventing caveolae formation in melanocytes results in increased production of intracellular cAMP and melanin pigments, but decreases cell protrusions, cell-cell contacts, pigment transfer and epidermis pigmentation. Altogether, our data establish that, in melanocytes, caveolae serve as key molecular hubs that couple signaling outputs from keratinocytes to mechanical plasticity. This process is crucial to maintain cell-cell contacts and intercellular communication, skin pigmentation and tissue homeostasis.
Load More