AS
Anna Ser‐Badia
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Presenilin-dependent regulation of tau pathology via the autophagy/proteasome pathway

Anna Ser‐Badia et al.Dec 23, 2023
Abstract Autosomal dominant inherited mutations in the presenilin ( PS / PSEN ) genes cause early-onset familial Alzheimer’s disease (AD) by enhancing cerebral accumulation of amyloid-β (Aβ) and microtubule-associated protein tau, although the precise cellular mechanisms by which PS dysfunction drives neuronal tau pathology remain still unclear. Here, we investigated the mechanisms linking PS/γ-secretase-dependent tau pathology and autophagy by using molecular, imaging and pathological approaches in brains, fibroblasts and induced pluripotent stem cells (iPSCs)-derived neurons from mutant PSEN1 carriers, as well as in a novel tauopathy mouse model lacking PS in glutamatergic neurons. We found colocalization of phosphorylated tau with the autophagy marker p62 in the hippocampus of tauopathy patients with PSEN1 mutations, corticobasal degeneration and Pick’s disease. Remarkably, disrupted autophagic clearance of pathological tau was evidenced by increased autophagy markers and accumulation of total and AD-associated phosphorylated tau species (pTau 181, 202, 217) in hippocampal lysates and autophagosomes of familial AD-linked PSEN1 patients and PS -deficient tau transgenic mice. Human iPSC-derived neurons harboring the familial AD-linked PSEN1 G206D mutation are less sensitive to autophagy inhibition, reduce tau release and accumulate intracellular tau oligomers. Human primary fibroblasts from PSEN1 G206D and/or L286P carriers show elevated LC3 and autolysosomes indicating that these familial AD-linked PSEN1 mutations disrupt autophagy flux. PS is required for efficient autophagy-mediated tau degradation in neurons through a dual mechanism involving autophagy induction via blockage of Akt/PRAS40-dependent mTORC1 activation and promoting autophagosome/lysosome fusion. Surprisingly, pharmacological proteasome inhibition decreases tau accumulation in neurons by promoting tau release through a mechanism that requires functional PS. In conclusion, PS is required for autophagy/proteasome-mediated tau elimination in neurons, while familial AD-linked PSEN mutations cause progressive tau pathology by disrupting autophagy. These findings may impact on the development of new therapeutic targets for tauopathy dementias.
7

Transcriptional and synaptic regulation of NMDA glutamate receptor-mediated hippocampal plasticity and memory

Arnaldo Parra‐Damas et al.Jan 19, 2025
Synapse-to-nucleus signaling regulates activity-dependent synaptic plasticity underlying memory by linking N-methyl-D-aspartate (NMDA) glutamate receptors (GluN) to gene transcription mediated by the transcription factor cAMP-response element binding protein (CREB), but the underlying gene programs mediating potentiation at excitatory synapses are unknown. Here, we analyzed genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) datasets of mouse and human CREB and the synaptonuclear factor CREB-regulated transcription coactivator1 (CRTC1) to identify relevant target genes and biological pathways coupling neuronal activity to synaptic function/plasticity. Our analyses indicate that CRTC1 specifically couples neuronal activity with synaptic plasticity by binding to conserved promoters of CREB target genes comprising inducible transcription factors (including c-fos, Crem, Npas4 and Nr4a1-3), and neuronal excitability and plasticity genes, including Ntrk2, Homer1, Dlg4 (PSD-95) and the NMDA receptor subunit Grin1 (GluN1). CRTC1/CREB target genes were highly enriched in gene ontology (GO) nuclear terms, including several members of the CREB family, and transcriptional modulators and repressors. Interestingly, GO enrichment and protein-protein interaction (PPI) network analyses revealed that genes mediating synapse-to-nucleus signaling (including most known synaptonuclear factors and direct interacting modulators) are collectively regulated by CREB/CRTC1, and that protein kinase C (PKC) is a key interactor of the CRTC1/14-3-3 complex at synapses. In agreement with these in silico analyses, we show that CRTC1 regulates synaptic activity-dependent phosphorylation and synaptic recruitment of GluN1 mediated by PKC in hippocampal neurons, and that PKC activation reverses NMDA receptor-mediated currents and long-term potentiation (LTP) deficits caused by CRTC1 silencing in the hippocampus. Consistent with genomics and functional data, morphological and behavioral analyses show crucial roles of CRTC1 on dendritic spine structure, plasticity, and hippocampal-dependent associative memory. Our results support a model in which neuronal activity and synaptic inputs are integrated in the nucleus through conserved CREB/CRTC1-regulated transcriptional programs sustaining global synapse-to-nucleus signaling pathways impacting on synaptic plasticity and memory.