A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
HC
Hui Cheng
Author with expertise in Impact of Hearing Loss on Cognitive Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
738
h-index:
25
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Joshua Campbell et al.Apr 1, 2018
Highlights•SCCs show chromosome or methylation alterations affecting multiple related genes•These regulate squamous stemness, differentiation, growth, survival, and inflammation•Copy-quiet SCCs have hypermethylated (FANCF, TET1) or mutated (CASP8, MAPK-RAS) genes•Potential targets include ΔNp63, WEE1, IAPs, PI3K-mTOR/MAPK, and immune responsesSummaryThis integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.Graphical abstract
3
Citation291
0
Save
0

Fast inhibition slows and desynchronizes mouse auditory efferent neuron activity

Matthew Fischl et al.Dec 23, 2023
Abstract The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that restrict MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation (‘wedge-slice’). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The ‘in vivo-like’ timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hyper-suppression of cochlear activity. Significance Statement Auditory brainstem neurons are specialized for speed and fidelity to encode rapid features of sound. Extremely fast inhibition contributes to precise brainstem sound encoding. This circuit also projects to medial olivocochlear (MOC) efferent neurons that suppress cochlear function to enhance detection of signals in background sound. Using a novel brain slice preparation with intact ascending circuitry, we show that inhibition of MOC neurons can also be extremely fast, with the speed of the circuit localized to the cochlear nucleus. In contrast with the enhancement of precision afforded by fast inhibition in other brainstem auditory circuits, inhibition to MOC neurons instead has a variable onset that delays and desynchronizes activity, thus reducing precision for a slow, sustained response to background sounds.
1

Synaptic plasticity of inhibitory synapses onto medial olivocochlear efferent neurons

Lester Cadenas et al.Jan 6, 2022
Abstract The descending auditory system modulates the ascending system at every level. The final descending, or efferent stage, is comprised of lateral olivocochlear (LOC) and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC-mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention, and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB-MOC synapses exhibit short-term depression, suggesting reduced MNTB-MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound-evoked activity in MNTB neurons in vivo , MNTB-MOC synapses may be tonically depressed. To probe this, we characterized short-term plasticity of MNTB-MOC synapses in mouse brain slices. We mimicked in vivo -like temperature and extracellular calcium conditions, and in vivo -like activity patterns of fast synaptic activation rates, sustained activation, and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, post-synaptic currents (PSCs) in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo , MNTB inhibition of MOC neurons persists despite tonic synaptic depression. Key points summary Inhibitory synapses from MNTB onto MOC neurons exhibit short-term plasticity that is sensitive to calcium and temperature, with enhanced synaptic depression occurring at higher calcium concentrations and at room temperature High rates of background synaptic activity that mimic the upper limits of spontaneous MNTB activity cause tonic synaptic depression of MNTB-MOC synapses that limits further synaptic inhibition High rates of activity at MNTB-MOC synapses cause synaptic summation concurrent depression to yield a response with an initial large amplitude that decays to a tonic inhibition
3

Epigenetic silencing by SMYD3 represses tumor intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck

Neha Nigam et al.Nov 4, 2022
SUMMARY Cancers often display immune escape, but the mechanisms and potential for reversibility are incompletely understood. Epigenetic dysregulation has been implicated in the immune escape of various cancer types. We have identified the epigenetic modifier SET and MYND-domain containing protein 3 (SMYD3) as a mediator of immune escape in human papilloma virus (HPV)- negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor prognosis and low response to immunotherapy with pembrolizumab, a programmed-death-1 (PD-1) targeting antibody. SMYD3 loss increased the sensitivity of HNSCC cancer cells to IFN-β, resulting in upregulation of type I IFN response and antigen presentation machinery genes. We found that SMYD3 regulates the transcription of Ubiquitin-Like PHD And RING Finger Domain- Containing Protein 1 (UHRF1), a key epigenetic reader of trimethylated lysine 9 on histone H3 (H3K9me3), which binds to H3K9me3-enriched promoters of key immune-related genes and silences their expression. SMYD3 further maintains the repression of immune-related genes through the deposition of H4K20me3 within the gene body regions of these genes. In an anti-PD-1 immune checkpoint resistant syngeneic mouse model of HPV-negative HNSCC, Smyd3 depletion induced influx of CD8+ T-cells, upregulated PD-L1 and MHC class I molecules, and increased sensitivity to anti-PD-1 therapy. SMYD3 overexpression was associated with decreased CD8 T-cell infiltration in tumor samples from patients with HPV-negative HNSCC, and was associated with poor response to pembrolizumab. Overall, these data highlight a previously unreported function of SMYD3 as a master epigenetic regulator of anti-tumor immune response in HPV-negative HNSCC and provide a rationale for translational approaches combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in this devastating disease.