RT
Rick Thorne
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
731
h-index:
48
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

IFRD1 promotes tumor cells “low-cost” survival under glutamine starvation via inhibiting histone H1.0 nucleophagy

Yabin Huang et al.May 28, 2024
Abstract Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.
0

KMT2A and chronic inflammation as potential drivers of sporadic parathyroid adenoma

Qin Xu et al.Jun 1, 2024
Abstract Background Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. Methods Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single‐cell RNA‐sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single‐cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. Results There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone‐lysine N‐methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto‐oncogene CCND2 , which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. Conclusions We revealed the previously underappreciated involvement of the KMT2A‒STAT3/GATA3‒ CCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti‐inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. Highlights Single‐cell RNA‐sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A‐mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.