HB
Helle Bogetofte
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
998
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

Hugo Fernandes et al.Feb 20, 2016
Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.
0
Citation304
0
Save
0

Improved Cell Therapy Protocols for Parkinson's Disease Based on Differentiation Efficiency and Safety of hESC-, hiPSC-, and Non-Human Primate iPSC-Derived Dopaminergic Neurons

Maria Sundberg et al.May 10, 2013
Abstract The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA neurons were able to restore motor function of 6-hydroxydopamine (6-OHDA) lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future.
7

Lipotype acquisition during neural developmentin vivois not recapitulated in stem cell-derived neurons

Anusha Gopalan et al.Aug 31, 2022
Abstract During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of tissue-specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery, but when and how this occurs is unclear. To address this, we used high-resolution mass spectrometry-based (MS ALL ) lipidomics to perform a quantitative and comprehensive analysis of mouse brain development covering early embryonic and postnatal stages. We discovered a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical brain lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero , whereas cholesterol attains its characteristic high levels after birth. In contrast, when profiling rodent and human stem cell-derived neurons, we observed that these do not acquire a brain lipotype per se . However, upon probing the lipid metabolic wiring by supplementing brain lipid precursors, we found that the stem cell-derived neurons were partially able to establish a brain-like lipotype, demonstrating that the cells are partially metabolically committed. Altogether, our report provides an extensive lipidomic resource for brain development and highlights a potential challenge in using stem cell-derived neurons for mechanistic studies of lipid biochemistry, membrane biology and biophysics that can be mitigated by further optimizing in vitro differentiation protocols. Significance Statement We report an extensive time-resolved resource of lipid molecule abundances across mouse brain development, starting as early as 10 days post-fertilization. The resource reveals a bifurcation in the establishment of the neural lipotype where the canonical 22:6-glycerophospholipid and 18:0-sphingolipid biomarkers are attained in utero , whereas cholesterol is attained after birth. Furthermore, we uncover that the neural lipotype is not established in rodent and human stem cell-derived neurons in vitro .
7
Citation2
0
Save
8

A novel post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s diseaseGBA-N370Sdopamine neurons

Helle Bogetofte et al.Jul 1, 2021
Abstract The causes of Parkinson’s disease (PD) likely involve complex interactions between environmental factors and susceptibility genes with variants at the GBA locus encoding the glucocerebrosidase (GCase) enzyme being the strongest common genetic risk factor for PD. To understand GBA -related disease mechanisms, we used a novel multipart-enrichment proteomics and post-translational modification workflow to simultaneously identify peptides with phosphorylation, reversible cysteine-modifications or sialylated N-linked glycosylation, alongside unmodified proteins. We identified large numbers of dysregulated proteins and post-translational modifications (PTMs) in heterozygous GBA - N370S PD patient induced pluripotent stem cells (iPSC)-derived dopamine neurons. Alterations in glycosylation status of lysosomal proteins identified disturbances in the autophagy-lysosomal pathway, concurrent with upstream perturbations in mTOR phosphorylation and activity in GBA-N370S iPSC-dopamine neurons. In addition, the strategy revealed several native and modified proteins encoded by PD-associated genes to be dysregulated in GBA-N370S neurons, enhancing our understanding of the wider role of GBA mutations on the neuronal proteome. Integrated pathway analysis of all datasets revealed impaired neuritogenesis in GBA-N370S PD iPSC-dopamine neurons and identified tau ( MAPT ) as a key mediator of this process. Using a functional assay, we confirmed neurite outgrowth deficits in GBA-N370S PD neurons and a central role for tau in this process. Furthermore, pharmacological restoration of GCase activity in GBA-N370S PD patient neurons rescued the neurite outgrowth deficit. Overall, this study demonstrates the potential of PTMomics to elucidate novel neurodegeneration-associated pathways and identify phenotypes and potential drug targets in complex disease models.
8
Citation2
0
Save
6

Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: altered mitochondrial and energy metabolism

Justyna Okarmus et al.Jul 10, 2020
Abstract PARK2 (parkin) mutations cause early onset of autosomal recessively inherited Parkinson’s disease (PD). Parkin is an ubiquitin E3 ligase and has been reported to participate in several cellular functions, including mitochondrial homeostasis. However, the specific metabolomic changes caused by parkin depletion remain largely unknown. Human induced pluripotent stem cells (iPSCs) with PARK2 knockout (KO) provide a valuable model for studying parkin dysfunction in dopaminergic neurons. In the current study, we used isogenic iPSCs to investigate the effect of parkin loss-of-function by comparative metabolomics analysis. The metabolomic profile of the PARK2 KO neurons differed substantially from that of healthy controls. We found increased tricarboxylic acid (TCA) cycle activity, perturbed mitochondrial ultrastructure connected with ATP depletion, glycolysis dysregulation with lactate accumulation, and elevated levels of short- and long-chain carnitines. These mitochondrial and energy perturbations in the PARK2 KO neurons were combined with increased levels of oxidative stress and a decreased anti-oxidative response. In conclusion, our data describe a unique metabolomic profile associated with parkin dysfunction, demonstrating several PD-related cellular defects. Our findings support and expand previously described PD phenotypic features and show that combining metabolomic analysis with an iPSC-derived dopaminergic neuronal model of PD is a valuable approach to obtain novel insight into the disease pathogenesis.
6
Citation1
0
Save
0

Temporal proteomic and PTMomic atlas of cerebral organoid development

Sofie Elmkvist et al.Sep 3, 2024
Cerebral organoids (CBOs) are generated from pluripotent stem cells that undergo neuroectoderm specification and neuronal differentiation in three dimensions. The developing neurons in CBOs migrate and self-organize into cerebral cortex-like layers, mimicking human brain development. CBOs develop according to intrinsic signaling mechanisms and offer unique insights into mechanisms of early human brain development. This process requires coordinated spatiotemporal regulation of protein expression and function, where the latter can be achieved by post-translational modifications (PTMs) on proteins. Despite the importance of proteins in brain development and function, profiling of protein abundance and the involvement of PTMs in CBO development remain underexplored. To gain insight into protein and PTM abundance in CBOs, we performed a high-resolution temporal analysis of CBOs up to day 200 using proteomics, PTMomics and metabolomics. We quantified more than 9,300 proteins and various neurodevelopmentally relevant PTMs (including phosphorylation, lysine acetylation, sialylated N-glycosylation, and cysteine modifications). We demonstrate that protein abundance and dynamic PTMs show significant temporal changes during CBO development related to neuronal differentiation and energy metabolism, whereas calcium signaling is mainly regulated by dynamic PTMs. We further show that synaptic protein content correlated with neurotransmitter levels, and we detected astroglia beyond day 100. Lastly, comparative analysis showed proteomic similarities between CBOs and human fetal brain tissue, supporting the physiological relevance of CBOs. Overall, our study presents a temporal atlas of protein and PTM abundance in CBOs and provides a valuable resource for studying neurodevelopment in neural organoids.
0

Lysosomal perturbations in dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation

Justyna Okarmus et al.Aug 13, 2019
Mutations in the PARK2 gene encoding parkin, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While parkin has been implicated in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration in both sporadic and familial PD upon parkin loss-of-function mutations remains unknown. Cultures of isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 knockout (KO) enable mechanistic studies of the effect of parkin deficiency in human dopaminergic neurons. In the present study, we used such cells to investigate the impact of PARK2 KO on the lysosomal compartment combining different approaches, such as mass spectrometry-based proteomics, electron microscopy (TEM) analysis and functional assays. We discovered a clear link between parkin deficiency and lysosomal alterations. PARK2 KO neurons exhibited a perturbed lysosomal morphology, displaying significantly enlarged and electron-lucent lysosomes as well as an increased total lysosomal content, which was exacerbated by mitochondrial stress. In addition, we found perturbed autophagic flux and decreased lysosomal enzyme activity suggesting an impairment of the autophagy-lysosomal pathway in parkin-deficient cells. Interestingly, activity of the GBA-encoded enzyme, β-glucocerebrosidase, was significantly increased suggesting the existence of a compensatory mechanism. In conclusion, our data provide a unique characterization of the morphology, content, and function of lysosomes in PARK2 KO neurons, thus revealing a new important connection between mitochondrial dysfunction and lysosomal dysregulation in PD pathogenesis.
0

Multi-omic analysis of guided and unguided forebrain organoids reveal differences in cellular composition and metabolic profiles

Marie Øhlenschlæger et al.Dec 23, 2023
Abstract Neural organoids are invaluable model systems for studying neurodevelopment and neurological diseases. For this purpose, reproducible differentiation protocols are needed that minimize inter-organoid variability whilst generating neural organoids that physiologically resemble the brain area of interest. Currently, two main approaches are used: guided, where the differentiation towards neuroectoderm and subsequently specific CNS regions is driven by applying extrinsic signalling molecules, and unguided, where the intrinsic capability of pluripotent stem cells to generate neuroectoderm without external signalling is promoted. Despite the importance for the field, the resulting differences between these models have not been directly investigated. To obtain an unbiased comparison, we performed a multi-omic analysis of forebrain organoids generated using a guided and unguided approach focusing on proteomic, lipidomic and metabolomic differences. Furthermore, we characterised differences in phosphorylation and sialylation states of proteins, two key post-translational modifications (PTMs) in neurodevelopment, and performed single cell transcriptomics (scRNAseq). The multi-omic analysis revealed considerable differences in neuronal-, synaptic and glial content, indicating that guided forebrain organoids contain a larger proportion of neurons, including GABAergic interneurons, and synapses whereas unguided organoids contain significantly more GFAP + cells and choroid plexus. Furthermore, substantial differences in mitochondrial- and metabolic profiles were identified, pointing to increased levels of oxidative phosphorylation and fatty acid β-oxidation in unguided forebrain organoids and a higher reliance on glycolysis in guided forebrain organoids. Overall, our study comprises a thorough description of the multi-omic differences arising when generating guided and unguided forebrain organoids and provide an important resource for the organoid field studying neurodevelopment and -disease.