KK
Kenji Kadomatsu
Author with expertise in Roles of Neurotrophins in Nervous System Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
1,618
h-index:
21
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Minocycline selectively inhibits M1 polarization of microglia

Kazuyoshi Kobayashi et al.Mar 7, 2013
Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1G93A mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1G93A mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.
0

Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms

Kiyoshi Saito et al.Dec 1, 2011
Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.
0
Citation494
0
Save
0

Identification of APBB1 as a substrate for anaplastic lymphoma kinase

Yuji Suzuki et al.Aug 8, 2024
Abstract Anaplastic lymphoma kinase (ALK) is a well-known oncogene involved in various malignancies such as anaplastic large cell lymphoma, lung cancer and neuroblastoma. Several substrates for fused ALK have been identified and their biological functions have been described. However, the lack of a comprehensive identification of ALK substrates limits our understanding of the biological roles of receptor ALK. Thus, this study aimed to identify novel ALK substrates and characterize their biological functions. We screened the interactors of the kinase domain of receptor ALK using proximity-dependent biotin identification and identified 43 interactors. We narrowed down the candidates by evaluating whether these interactors were downstream of ALK in a neuroblastoma cell line, NB-1. Amongst these, we identified amyloid beta precursor protein-binding family B member 1 (APBB1) as an ALK downstream molecule involved in NB-1 cell viability. Finally, we assessed the kinase-substrate relationship between ALK and APBB1 and found that ALK phosphorylated multiple tyrosine residues in APBB1 both in-cell and in-tube assays, with tyrosine 269 as a major target. In conclusion, we successfully identified a new substrate for receptor ALK. Our results may help further elucidate the molecular mechanism of ALK downstream signalling in neuroblastoma.
0

Systemic administrations of protamine heal subacute spinal cord injury in mice.

Tomoya Ozaki et al.Dec 1, 2024
Spinal cord injury (SCI) results in damage to neural circuits that cause long-term locomotor and sensory disability. The objective of the present study is to evaluate whether a clinical drug, protamine, can be employed as a therapeutic agent for SCI. First, we examined the rescue effect of protamine on dystrophic endballs (DEs) cultured on a chondroitin sulfate (CS) gradient coating. Consequently, axons with DE, which are unable to grow through the CS barrier, resumed growth after protamine treatment and were able to pass through the barrier. In addition, we tested whether protamine resolves the DE phenotype, accumulation of autophagosomes. The results demonstrated that protamine has significantly reduced the density of LC3 in DEs. Subsequently, mice were administered 1 mg/kg protamine via the tail vein one week following a contusion injury to the thoracic spinal cord. The hindlimb movements of the mice were evaluated in order to assess the therapeutic effect of protamine. Eleven venous administrations of protamine improved the symptoms. The current study has demonstrated that protamine cancels the CS inhibitory effect on axonal regrowth. Administrations of protamine were observed to alleviate hindlimb motor dysfunction in SCI mice. Our results suggest an effective therapeutic agent for SCI and a possibility for drug repositioning. It would be of interest to see if protamine also exerts a therapeutic effect in brain injury.