MJ
Mandy Johnstone
Author with expertise in Genomic Rearrangements and Copy Number Variations
King's College London, South London and Maudsley NHS Foundation Trust, University of Edinburgh
+ 6 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
0
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Association of whole-genome and NETRIN1 signaling pathway-derived polygenic risk scores for Major Depressive Disorder and thalamic radiation white matter microstructure in UK Biobank

Miruna Barbu et al.May 7, 2020
+10
X
Y
M
Background: Major Depressive Disorder (MDD) is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome, and growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide an important route for identification of disease mechanisms by focusing on a specific process excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether MDD polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRS) and the whole genome excluding NETRIN1 pathway genes (genomic-PRS) were associated with white matter integrity. Methods: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: N = 6,401; MD: N = 6,390). Results: We found significantly lower FA in the superior longitudinal fasciculus (β = -0.035, pcorrected = 0.029) and significantly higher MD in a global measure of thalamic radiations (β = 0.029, pcorrected = 0.021), as well as higher MD in the superior (β = 0.034, pcorrected = 0.039) and inferior (β = 0.029, pcorrected = 0.043) longitudinal fasciculus and in the anterior (β = 0.025, pcorrected = 0.046) and superior (β = 0.027, pcorrected = 0.043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. Conclusions: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for MDD through effects on thalamic radiation white matter microstructure.
0

Rare loss-of-function variants in KMT2F are associated with schizophrenia and developmental disorders

Tarjinder Singh et al.May 7, 2020
+56
D
M
T
Schizophrenia is a common, debilitating psychiatric disorder with a substantial genetic component. By analysing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls, and 1,077 parent-proband trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in KMT2F and risk for schizophrenia. In this dataset, we observed three de novo LoF mutations, seven LoF variants in cases, and none in controls (P=3.3x10^(-9)). To search for LoF variants in KMT2F in individuals without a known neuropsychiatric diagnosis, we examined the exomes of 45,376 individuals in the ExAC database and found only two heterozygous LoF variants, showing that KMT2F is significantly depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying KMT2F LoF variants also had varying degrees of learning difficulties. We further identified four KMT2F LoF carriers among 4,281 children with diverse, severe, undiagnosed developmental disorders, and two additional carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations show that LoF variants in KMT2F cause a range of neurodevelopmental disorders, including schizophrenia. Combined with previous common variant evidence, we more generally implicate epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, as an important mechanism in the pathogenesis of schizophrenia.
0

Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

Yen‐Chen Feng et al.May 6, 2020
+230
L
D
Y
Sequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.
0

DISC1 regulates N-Methyl-D-Aspartate receptor dynamics: Abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness

Elise Malavasi et al.May 7, 2020
+33
E
K
E
The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-Methyl-D-Aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.
0
0
Save
0

Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte-myelin dysfunction

Navneet Vasistha et al.May 7, 2020
+21
S
M
N
Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging (DTI) and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption in white matter integrity compared to familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) case derived oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro . Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced compared to controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.