MH
Mareike Herzog
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
340
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells

Harveer Dev et al.Jul 17, 2018
BRCA1 deficiencies cause breast, ovarian, prostate and other cancers, and render tumours hypersensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. To understand the resistance mechanisms, we conducted whole-genome CRISPR–Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP inhibitors. We identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance. Mechanistically, we show that C20orf196 and FAM35A form a complex, ‘Shieldin’ (SHLD1/2), with FAM35A interacting with single-stranded DNA through its C-terminal oligonucleotide/oligosaccharide-binding fold region. We establish that Shieldin acts as the downstream effector of 53BP1/RIF1/MAD2L2 to promote DNA double-strand break (DSB) end-joining by restricting DSB resection and to counteract homologous recombination by antagonizing BRCA2/RAD51 loading in BRCA1-deficient cells. Notably, Shieldin inactivation further sensitizes BRCA1-deficient cells to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. Highlighting this potential, we document reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance. Through CRISPR–Cas9 screen, Dev et al. identified that SHLD1/2 inhibition contributes to PARP-inhibitor resistance. Mechanistically, SHLDs promote non-homologous end-joining and antagonize homologous recombination.
0
Citation337
0
Save
0

ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Gabriel Balmus et al.May 24, 2018
Summary Mutations in the ATM tumor suppressor confer hypersensitivity to DNA-damaging agents. To explore genetic resistance mechanisms, we performed genome-wide CRISPR-Cas9 screens in cells treated with the DNA topoisomerase poison topotecan. Thus, we establish that loss of terminal components of the non-homologous end-joining (NHEJ) machinery or the BRCA1-A complex specifically confers topotecan resistance to ATM-deficient cells. We show that hypersensitivity of ATM-mutant cells to topotecan or the poly-(ADP-ribose) polymerase inhibitor olaparib is due to delayed homologous recombination repair at DNA-replication-fork-associated double-strand breaks (DSBs), resulting in toxic NHEJ-mediated chromosome fusions. Accordingly, restoring legitimate repair in ATM-deficient cells, either by preventing NHEJ DNA ligation or by enhancing DSB-resection by BRCA1-A complex inactivation, markedly suppresses this toxicity. Our work suggests opportunities for patient stratification in ATM-deficient cancers and when using ATM inhibitors in the clinic, and identifies additional therapeutic vulnerabilities that might be exploited when such cancers evolve drug resistance. One Sentence Summary ATM counteracts toxic NHEJ at broken replication forks
0
Citation2
0
Save
0

Mutagenic mechanisms of cancer-associated DNA polymerase ε alleles

Mareike Herzog et al.Sep 4, 2020
ABSTRACT A single amino acid residue change in the exonuclease domain of human DNA polymerase ε, P286R, is associated with the development of colorectal cancers, and has been shown to impart a mutagenic phenotype. Perhaps unexpectedly, the corresponding Pol ε allele in the yeast Saccharomyces cerevisiae ( pol2-P301R ), was found to drive greater mutagenesis than exonuclease-deficient Pol ε ( pol2-4 ), a phenotype sometimes termed ultra -mutagenesis. By studying the impact on mutation frequency, type, replication-strand bias, and sequence context, we show that ultra -mutagenesis is commonly observed in cells carrying a range of cancer-associated Pol ε exonuclease domain alleles. Similarities between mutations generated by these alleles and those generated in pol2-4 cells indicate a shared mechanism of mutagenesis that yields a mutation pattern similar to cancer Signature 14. Comparison of POL2 ultra -mutator with pol2-M644G , a mutant in the polymerase domain decreasing Pol ε fidelity, revealed unexpected analogies in the sequence context and strand bias of mutations. Analysis of mutational patterns unique to exonuclease domain mutant cells suggests that backtracking of the polymerase, when the mismatched primer end cannot be accommodated in the proofreading domain, results in the observed increase in insertions and T>A mutations in specific sequence contexts.
0
Citation1
0
Save
0

Detection of functional protein domains by unbiased genome-wide forward genetic screening

Mareike Herzog et al.Oct 12, 2017
Genetic and chemo-genetic interactions have played key roles in elucidating the molecular mechanisms by which certain chemicals perturb cellular functions. Many studies have employed gene knockout collections or gene disruption/depletion strategies to identify routes for evolving resistance to chemical agents. By contrast, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations, has been limited even in simpler, genetically amenable organisms such as yeast, and has not until recently been possible in mammalian cell culture systems. Here, by demonstrating its utility in identifying suppressors of cellular sensitivity to the drugs camptothecin or olaparib, we describe an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast and in haploid mouse embryonic stem cells in a short timeframe, and with potential applications in essentially any other haploid system. In addition to its utility for molecular biology research, this protocol can be used to identify drug targets and to predict mechanisms leading to drug resistance. Mapping suppressor mutations on the primary sequence or three-dimensional structures of protein suppressor hits provides insights into functionally relevant protein domains, advancing our molecular understanding of protein functions, and potentially helping to improve drug design and applicability.