NS
Nathanael Spann
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
14,283
h-index:
30
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities

Sven Heinz et al.May 1, 2010
+7
N
C
S
Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.
0
0

Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities

David Gosselin et al.Dec 1, 2014
+8
C
V
D
Macrophages reside in essentially all tissues of the body and play key roles in innate and adaptive immune responses. Distinct populations of tissue macrophages also acquire context-specific functions that are important for normal tissue homeostasis. To investigate mechanisms responsible for tissue-specific functions, we analyzed the transcriptomes and enhancer landscapes of brain microglia and resident macrophages of the peritoneal cavity. In addition, we exploited natural genetic variation as a genome-wide “mutagenesis” strategy to identify DNA recognition motifs for transcription factors that promote common or subset-specific binding of the macrophage lineage-determining factor PU.1. We find that distinct tissue environments drive divergent programs of gene expression by differentially activating a common enhancer repertoire and by inducing the expression of divergent secondary transcription factors that collaborate with PU.1 to establish tissue-specific enhancers. These findings provide insights into molecular mechanisms by which tissue environment influences macrophage phenotypes that are likely to be broadly applicable to other cell types.
0
Citation1,102
0
Save
0

Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to Enhancer Transcription

Minna Kaikkonen et al.Aug 1, 2013
+8
S
N
M
Recent studies suggest a hierarchical model in which lineage-determining factors act in a collaborative manner to select and prime cell-specific enhancers, thereby enabling signal-dependent transcription factors to bind and function in a cell-type-specific manner. Consistent with this model, TLR4 signaling primarily regulates macrophage gene expression through a pre-existing enhancer landscape. However, TLR4 signaling also induces priming of ∼3,000 enhancer-like regions de novo, enabling visualization of intermediates in enhancer selection and activation. Unexpectedly, we find that enhancer transcription precedes local mono- and dimethylation of histone H3 lysine 4 (H3K4me1/2). H3K4 methylation at de novo enhancers is primarily dependent on the histone methyltransferases Mll1, Mll2/4, and Mll3 and is significantly reduced by inhibition of RNA polymerase II elongation. Collectively, these findings suggest an essential role of enhancer transcription in H3K4me1/2 deposition at de novo enhancers that is independent of potential functions of the resulting eRNA transcripts.
0
Citation611
0
Save
0

Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses

Nathanael Spann et al.Sep 1, 2012
+23
J
L
N
Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.
0

Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine

Roksana Pirzgalska et al.Oct 9, 2017
+19
J
E
R
Sympathetic neuron–associated macrophages act as a local sink for norepinephrine, leading to reduced thermogenesis and increased obesity. The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic of debate. Here we identify sympathetic neuron–associated macrophages (SAMs) as a population of cells that mediate clearance of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a potential target for obesity treatment.
0

The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response

Mathieu Blanc et al.Dec 27, 2012
+20
K
W
M
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
5

Mechanisms underlying divergent responses of genetically distinct macrophages to IL-4

Marten Hoeksema et al.Nov 3, 2020
+6
I
N
M
Abstract Mechanisms by which non-coding genetic variation influences gene expression remain only partially understood but are considered to be major determinants of phenotypic diversity and disease risk. Here, we evaluated effects of >50 million SNPs and InDels provided by five inbred strains of mice on the responses of macrophages to interleukin 4 (IL-4), a cytokine that plays pleiotropic roles in immunity and tissue homeostasis. Remarkably, of >600 genes induced >2-fold by IL-4 across the five strains, only 26 genes reached this threshold in all strains. By applying deep learning and motif mutation analyses to epigenetic data for macrophages from each strain, we identified the dominant combinations of lineage determining and signal-dependent transcription factors driving late enhancer activation. These studies further revealed mechanisms by which non-coding genetic variation influences absolute levels of enhancer activity and their dynamic responses to IL-4, thereby contributing to strain-differential patterns of gene expression and phenotypic diversity.
5
Citation2
0
Save
1

Systematic analysis of transcriptional and epigenetic effects of genetic variation in Kupffer cells enables discrimination of cell intrinsic and environment-dependent mechanisms

Hunter Bennett et al.Sep 23, 2022
+12
E
T
H
ABSTRACT Noncoding genetic variation is a major driver of phenotypic diversity but determining the underlying mechanisms and the cell types in which it acts remain challenging problems. Here, we investigate the impact of natural genetic variation provided by phenotypically diverse inbred strains of mice on gene expression and epigenetic landscapes of Kupffer cells. Analysis of gene expression in Kupffer cells and other liver cell types derived from C57BL/6J, BALB/cJ and A/J mice provided evidence for strain-specific differences in environmental factors influencing Kupffer cell phenotypes, including preferential Leptin signaling in BALB/cJ Kupffer cells. Systematic analysis of transcriptomic and epigenetic data from F1 hybrids of these mice, and transcriptomic data from strain-specific Kupffer cells engrafted into a common host enabled quantitative assessment of cis versus trans effects of genetic variation on gene expression and an estimate of cell autonomous versus non cell autonomous effects. Under homeostatic conditions, trans effects of genetic variation were dominant, with the majority of trans regulation being non cell autonomous. In contrast, strain specific responses to acutely administered LPS were primarily associated with genetic variation acting in cis to modify response elements for lineage determining and signal dependent transcription factors. Collectively, these findings reveal cell intrinsic and environmental effects of natural genetic variation on gene expression, demonstrate the use of enhancers as detectors of trans effects of genetic variation, and provide a new resource for understanding the impact of genetic variation on gene expression in Kupffer cells.
1

The Human Milk Oligosaccharide 3’Sialyllactose Promotes Inflammation Resolution and Reduces Atherosclerosis Development in Mice

Ariane Pessentheiner et al.Mar 20, 2021
+15
C
N
A
SUMMARY Macrophages contribute to the induction and resolution of inflammation and play a central role in the chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3’sialyllactose (3’SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3’SL attenuates a selected set of inflammatory gene expression and promotes activity of LXR and SREBP. These acute anti-inflammatory effects of 3’SL were associated with reduced histone H3K27 acetylation at a subset of LPS-inducible enhancers distinguished by preferential enrichment for CTCF, IRF2, BCL6, and other transcription factor recognition motifs. In a murine atherosclerosis model, both subcutaneous and oral administration of 3’SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3’SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.
0

Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP pathways in macrophages

Evan Muse et al.Feb 11, 2018
+14
S
J
E
Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of SREBP1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here, we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in liver that lead to hypertriglyceridemia.
Load More