PP
Pintu Patra
Author with expertise in Lipid Rafts and Membrane Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A particle-based computational model to analyse remodelling of the red blood cell cytoskeleton during malaria infections

Julia Jäger et al.Oct 4, 2021
Abstract Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum , the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments. Author summary Malaria is one of the deadliest infectious diseases and its symptoms are related to the blood stage, when the parasite multiplies within red blood cells. In order to avoid clearance by the spleen, the parasite produces specific factors like the adhesion receptor PfEMP1 and the multifunctional protein KAHRP that lead to the formation of adhesive knobs on the surface of the red blood cells and thus increase residence time in the vasculature. We have developed a computational model for the parasite-induced remodelling of the actin-spectrin network to quantitatively predict the dynamical changes in the mechanical properties of the infected red blood cells and the spatial distribution of the different protein components of the membrane skeleton. Our simulations show that KAHRP can relocate to actin junctions due to dynamical changes in binding affinities, in good qualitative agreement with super-resolution imaging experiments. In the future, our simulation framework can be used to gain further mechanistic insight into the way malaria parasites attack the red blood cell cytoskeleton.
0

Systematic analysis of the Myxococcus xanthus developmental gene regulatory network supports posttranslational regulation of FruA by C-signaling

Shreya Saha et al.Sep 12, 2018
Upon starvation Myxococcus xanthus undergoes multicellular development. Rod-shaped cells move into mounds in which some cells differentiate into spores. Cells begin committing to sporulation at 24-30 h poststarvation, but the mechanisms governing commitment are unknown. FruA and MrpC are transcription factors that are necessary for commitment. They bind cooperatively to promoter regions and activate developmental gene transcription, including that of the dev operon. Leading up to and during the commitment period, dev mRNA increased in wild type, but not in a mutant defective in C-signaling, a short-range signaling interaction between cells that is also necessary for commitment. The C-signaling mutant exhibited ~20-fold less dev mRNA than wild type at 30 h poststarvation, despite a similar level of MrpC and only twofold less FruA. Boosting the FruA level twofold in the C-signaling mutant had little effect on the dev mRNA level, and dev mRNA was not less stable in the C-signaling mutant. Neither did high cooperativity of MrpC and FruA binding upstream of the dev promoter explain the data. Rather, our systematic experimental and computational analyses support a model in which C-signaling activates FruA at least ninefold posttranslationally in order to commit a cell to spore formation.