PH
Priya Hari
Author with expertise in Cellular Senescence and Aging-Related Diseases
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Toll-like receptor 2 orchestrates a potent anti-tumor response in non-small cell lung cancer

Fraser Millar et al.Jun 5, 2021
Abstract Targeting early-stage lung cancer is vital to improve overall survival. We previously identified Toll-like receptor 2 (TLR2) as a regulator of oncogene-induced senescence (OIS) and the senescence-associated secretory phenotype (SASP), both key for tumor suppression. Here, we demonstrate that TLR2 is widely expressed in human lung tumor epithelium where it correlates with improved survival and clinical regression. Using genetically engineered mouse models of lung cancer we have shown that Tlr2 is a tumor suppressor in lung cancer initiation via regulation of proliferation and the SASP. The SASP is integral in the regulation of immune surveillance of premalignant cells, and we observe impaired myeloid derived immune surveillance following Tlr2 loss. Lastly, we show that administration of a synthetic Tlr2 agonist significantly reduces preinvasive lung tumor growth. Our data highlight an unexpected tumor surveillance pathway in early-stage lung cancer with therapeutic potential. Statement of significance Lung cancer is a major cancer of unmet need. This study identifies a novel tumor suppressor mechanism in lung cancer. Not only does this highlight a potential therapeutic target for early-stage disease but also multiple secreted candidate biomarkers that could be exploited to augment lung cancer screening approaches.
23
Citation1
0
Save
0

Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence

Asimina Pantazi et al.Nov 8, 2018
Cellular senescence is triggered by diverse stimuli and is characterised by long-term growth arrest and secretion of cytokines and chemokines (termed the SASP - senescence-associated secretory phenotype). Senescence can be organismally beneficial as it can prevent the propagation of damaged or mutated clones and stimulate their clearance by immune cells. However, it has recently become clear that senescence also contributes to the pathophysiology of aging through the accumulation of damaged cells within tissues. Here we describe that inhibition of the reaction catalysed by LSG1, a GTPase involved in the biogenesis of the 60S ribosomal subunit, leads to a robust induction of cellular senescence. Perhaps surprisingly, this was not due to ribosome depletion or translational insufficiency, but rather through perturbation of endoplasmic reticulum (ER) homeostasis and a dramatic upregulation of the cholesterol biosynthesis pathway. This cholesterol/ER signature is shared with several other forms of senescence and contributes to the cell cycle arrest in oncogene-induced senescence (OIS). Furthermore, targetting of LSG1 resulted in amplification of the cholesterol/ER signature and restoration of a robust cellular senescence response in transformed cells, suggesting potential therapeutic uses of LSG1 inhibition.
1

Cytoplasmic innate immune sensing by the caspase-4 non-canonical inflammasome promotes cellular senescence

Irene Fernández-Duran et al.Oct 16, 2020
Summary Cytoplasmic recognition of microbially derived lipopolysaccharides (LPS) in human cells is elicited by the inflammatory cysteine aspartic proteases caspase-4 and caspase-5, which activate non-canonical inflammasomes inducing a form of inflammatory programmed cell death termed pyroptosis. Here we show that LPS mediated activation of the non-canonical inflammasome also induces cellular senescence and the activation of tumour suppressor stress responses in human diploid fibroblasts. Interestingly, this LPS-induced senescence is dependent on caspase-4, the pyroptotic effector protein gasdermin-D and the tumour suppressor protein p53. Also, experiments with a catalytically deficient mutant suggest that caspase-4 proteolytic activity is not necessary for its role in senescence. Furthermore, we found that the caspase-4 non-canonical inflammasome is induced and assembled during Ras-mediated oncogene-induced senescence (OIS). Moreover, targeting caspase-4 in OIS showed that the non-canonical inflammasome is critical for SASP activation and contributes to reinforcing the cell cycle arrest in OIS. Finally, we observed that caspase-4 induction occurs in vivo in models of tumour suppression and ageing. Altogether, we are unveiling that cellular senescence is induced by cytoplasmic microbial LPS recognition by the caspase-4 non-canonical inflammasome and that this pathway is conserved in the senescence program induced by oncogenic stress.
0

Nuclear pore density controls heterochromatin reorganization during senescence

Charlene Boumendilrid et al.Jul 21, 2018
Oncogene induced senescence (OIS) is a cell cycle arrest program triggered by oncogenic signalling. An important characteristic of OIS is activation of the senescence associated secretory phenotype (SASP)1 which can reinforce cell cycle arrest, lead to paracrine senescence but also promote tumour progression (2,3,4). Concomitant with cell cycle arrest and the SASP activation, OIS cells undergo a striking nuclear chromatin reorganization, with loss of heterochromatin from the nuclear periphery and the appearance of internal senescence-associated heterochromatin foci (SAHF)5. The mechanisms by which SAHF are formed, and their role in cell cycle arrest and expression of the SASP, remain poorly understood. Here we show that nuclear pore density increases during OIS and is responsible for SAHF formation. In particular, we show that the nucleoporin TPR is required for both SAHF formation and maintenance. The TPR-induced loss of SAHF does not affect cell cycle arrest but completely abrogates the SASP. Our results uncover a previously unknown role of nuclear pores in heterochromatin re-organization in mammalian nuclei and in senescence, which uncouples the cell cycle arrest from the SASP.