KT
Kenneth Taylor
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
22
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Epigenetic regulation of PAR4-related platelet activation: mechanistic links between environmental exposure and cardiovascular disease

Laura Corbin et al.Nov 22, 2018
Protease-activated receptor 4 (PAR4) is a potent thrombin receptor. Epigenetic control of the F2RL3 locus (which encodes for PAR4) via DNA methylation is associated with both smoking and cardiovascular disease. We examined the association between DNA hypomethylation at F2RL3 and risk of cardiovascular disease, focusing on acute myocardial infarction (AMI) (n=853/2,352 cases/controls). We used in vitro cell models to dissect the role of DNA methylation in regulating expression of F2RL3. We investigated the interplay between F2RL3 DNA methylation and platelet function in human (n=41). Lastly, we used Mendelian randomization to unify observational and functional work by assessing evidence for causal relationships using data from UK Biobank (n=407,141) and CARDIoGRAMplusC4D (n=184,305). Observationally, one standard deviation (SD) decrease in DNA methylation at F2RL3 was associated with a 25% increase in the odds of AMI. In vitro, short-term exposure of cells to cigarette smoke reduced F2RL3 DNA methylation and increased gene expression. Transcriptional assays flagged a role for a CEBP recognition sequence in modulating the enhancer activity of F2RL3 exon 2. Lower DNA methylation at F2RL3 was associated with increased platelet reactivity in human. The estimated casual odds ratio of ischaemic heart disease was 1.03 (95% CI: 1.00, 1.07) per 1 SD decrease in F2RL3 DNA. In conclusion, we show that DNA methylation-dependent platelet activation is part of a complex system of features contributing to cardiovascular health. Tailoring therapeutic intervention to new knowledge of F2RL3/PAR4 function should be explored to ameliorate the detrimental effects of this risk factor on cardiovascular health.
0

Prioritizing putative influential genes in early life cardiovascular disease susceptibility by applying tissue-specific Mendelian randomization

Kenneth Taylor et al.Apr 11, 2018
Background: The extent to which changes in gene expression can influence cardiovascular disease risk across different tissue types has not yet been systematically explored. We have developed an analytical framework that integrates tissue-specific gene expression, Mendelian randomization and multiple-trait colocalization to develop functional mechanistic insight into the causal pathway from genetic variant to complex trait. Methods: We undertook a transcriptome-wide association study in a population of young individuals to uncover genetic variants associated with both nearby gene expression and cardiovascular traits. Two-sample Mendelian randomization was then applied using large-scale datasets to investigate whether changes in gene expression within certain tissue types may influence cardiovascular trait variation. We subsequently performed Bayesian multiple-trait colocalization to further interrogate findings and also gain insight into whether DNA methylation, as well as gene expression, may play a role in disease susceptibility. Results: Eight genetic loci were associated with changes in gene expression and early life measures of cardiovascular function. Our Mendelian randomization analysis provided evidence of tissue-specific effects at multiple loci, of which the effects at the ADCY3 and FADS1 loci for body mass index and cholesterol respectively were particularly insightful. Multiple trait colocalization uncovered evidence which suggested that changes in DNA methylation at the promoter region upstream of FADS1/TMEM258 may also play a role in cardiovascular trait variation along with gene expression. Furthermore, colocalization analyses were able to uncover evidence of tissue-specificity, most prominantly between SORT1 expression in liver tissue and cholesterol levels. Conclusions: Disease susceptibility can be influenced by differential changes in tissue-specific gene expression and DNA methylation. Our analytical framework should prove valuable in elucidating mechanisms in disease, as well as helping prioritize putative causal genes at associated loci where multiple nearby genes may be co-regulated. Future studies which continue to uncover quantitative trait loci for molecular traits across various tissue and cell types will further improve our capability to understand and prevent disease.