LD
Leigh‐Anne Dell
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
0
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical and thalamic connectivity of occipital visual cortical areas 17, 18, 19 and 21 of the domestic ferret (Mustela putorius furo).

Leigh‐Anne Dell et al.Dec 9, 2018
The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the occipital visual areas 17,18, 19 and 21 in the ferret using standard anatomical tract-tracing methods. In line with previous studies of mammalian visual cortex connectivity, substantially more anterograde and retrograde label was present in the hemisphere ipsilateral to the injection site compared to the contralateral hemisphere. Ipsilateral reciprocal connectivity was the strongest within the occipital visual areas, while weaker connectivity strength was observed in the temporal, suprasylvian and parietal visual areas. Callosal connectivity tended to be strongest in the homotopic cortical areas, and revealed a similar areal distribution to that observed in the ipsilateral hemisphere, although often less widespread across cortical areas. Ipsilateral reciprocal connectivity was observed throughout the visual nuclei of the dorsal thalamus, with no contralateral connections to the visual thalamus being observed. The current study, along with previous studies of connectivity in the cat, identified the posteromedial lateral suprasylvian visual area (PMLS) as a distinct network hub external to the occipital visual areas in carnivores, implicating PMLS as a potential gateway to the parietal cortex for dorsal stream processing. These data will also contribute to the Ferretome (www.ferretome.org), a macro connectome database of the ferret brain, providing essential data for connectomics analyses and cross-species analyses of connectomes and brain connectivity matrices, as well as providing data relevant to additional studies of cortical connectivity across mammals and the evolution of cortical connectivity variation.
0

Cortical and thalamic connectivity of temporal visual cortical areas 20a and 20b of the domestic ferret (Mustela putorius furo).

Leigh‐Anne Dell et al.Dec 10, 2018
The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the temporal visual areas 20a and 20b in the ferret using standard anatomical tract-tracing methods. The two temporal visual areas are strongly interconnected, but area 20a is primarily connected to the occipital visual areas, whereas area 20b maintains more widespread connections with the occipital, parietal and suprasylvian visual areas and the secondary auditory cortex. The callosal connectivity, although homotopic, consists mainly of very weak anterograde labelling which was more widespread in area 20a than area 20b. Although areas 20a and 20b are well connected with the visual dorsal thalamus, the injection into area 20a resulted in more anterograde label, whereas more retrograde label was observed in the visual thalamus following the injection into area 20b. Most interestingly, comparisons to previous connectional studies of cat areas 20a and 20b reveal a common pattern of connectivity of the temporal visual cortex in carnivores, where the posterior parietal cortex and the central temporal region (PMLS) provide network points required for dorsal and ventral stream interaction enroute to integration in the prefrontal cortex. This pattern of network connectivity is not dissimilar to that observed in primates, which highlights the ferret as a useful animal model to understand visual sensory integration between the dorsal and ventral streams. This data will contribute to the Ferretome (www.ferretome.org) to facilitate cross species analysis of brain connectomes and wiring principles of the brain.
0

Cortical and thalamic connectivity of posterior parietal visual cortical areas PPc and PPr of the domestic ferret (Mustela putorius furo).

Leigh‐Anne Dell et al.Dec 10, 2018
The present study describes the ipsilateral and contralateral cortico-cortical and cortico-thalamic connectivity of the parietal visual areas PPc and PPr in the ferret using standard anatomical tract-tracing methods. The two divisions of posterior parietal cortex of the ferret are strongly interconnected, however area PPc shows stronger connectivity with the occipital and suprasylvian visual cortex, while area PPr shows stronger connectivity with the somatomotor cortex, reflecting the functional specificity of these two areas. This pattern of connectivity is mirrored in the contralateral callosal connections. In addition, PPc and PPr are connected with the visual and somatomotor nuclei of the dorsal thalamus. Numerous connectional similarities exist between the posterior parietal cortex of the ferret (PPc and PPr) and the cat (area 7 and 5), indicative of the homology of these areas within the Carnivora. These findings highlight the existence of a fronto-parietal network as a shared feature of the organization of parietal cortex across Euarchontoglires and Laurasiatherians, with the degree of expression varying in relation to the expansion and areal complexity of the posterior parietal cortex. This observation indicates that the ferret is a potentially valuable experimental model animal for understanding the evolution and function of the posterior parietal cortex and the fronto-parietal network across mammals. The data generated will also contribute to the Ferretome (www.ferretome.org) connectomics databank, to further cross-species analyses of connectomes and illuminate wiring principles of cortical connectivity across mammals.
0

A computational approach for characterizing the structural basis of intrinsic coupling modes of the cerebral cortex

Arnaud Messé et al.Dec 19, 2018
Intrinsic coupling modes (ICMs) provide a framework for describing the interactions of ongoing brain activity at multiple spatial and temporal scales. Two types of ICMs can be distinguished, namely phase ICMs arising from phase coupling of band-limited oscillatory signals, and envelope ICMs corresponding to coupled slow fluctuations of signal envelopes. These coupling modes represent a widely used concept in modern cognitive neuroscience for probing the connectional organization of intact or damaged brains. However, the principles that shape ICMs remain elusive, in particular their relation to the underlying brain structure. Here we explored ICMs from ongoing activity of multiple cortical areas recorded from awake ferrets using chronically implanted electrocorticographic (ECoG) arrays. Additionally, we obtained different structural connectivity (SC) estimates for the regions underlying the ECoG arrays. Large-scale computational models were used to explore the ability to predict both types of ICMs. We found that simple computational models based on the SC topology already reproduce the functional coupling patterns reasonably well. Thus, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are strongly related to the underlying structural connectivity of the cerebral cortex.
0

Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain

Céline Delettre et al.Jan 10, 2019
The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and non invasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman’s rho ranging from 0.67 to 0.91), while only small, non-significant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms and hence, into the influence of choosing one algorithm over another.