LJ
Louise Jawerth
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
3,817
h-index:
19
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Strain history dependence of the nonlinear stress response of fibrin and collagen networks

Stefan Münster et al.Jun 10, 2013
We show that the nonlinear mechanical response of networks formed from un-cross-linked fibrin or collagen type I continually changes in response to repeated large-strain loading. We demonstrate that this dynamic evolution of the mechanical response arises from a shift of a characteristic nonlinear stress-strain relationship to higher strains. Therefore, the imposed loading does not weaken the underlying matrices but instead delays the occurrence of the strain stiffening. Using confocal microscopy, we present direct evidence that this behavior results from persistent lengthening of individual fibers caused by an interplay between fiber stretching and fiber buckling when the networks are repeatedly strained. Moreover, we show that covalent cross-linking of fibrin or collagen inhibits the shift of the nonlinear material response, suggesting that the molecular origin of individual fiber lengthening may be slip of monomers within the fibers. Thus, a fibrous architecture in combination with constituents that exhibit internal plasticity creates a material whose mechanical response adapts to external loading conditions. This design principle may be useful to engineer novel materials with this capability.
0
Citation259
0
Save
0

The Glycolytic Protein Phosphofructokinase Dynamically Relocalizes into Subcellular Compartments with Liquid-like Properties in vivo

SoRi Jang et al.May 13, 2019
Abstract While much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. Here we built a hybrid microfluidic-hydrogel device for use in Caenorhabditis elegans to systematically examine and quantify the dynamic subcellular localization of the rate-limiting enzyme of glycolysis, phosphofructokinase-1/PFK-1.1. We determine that endogenous PFK-1.1 localizes to distinct, tissue-specific subcellular compartments in vivo . In neurons, PFK-1.1 is diffusely localized in the cytosol, but capable of dynamically forming phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in the dispersion of PFK-1.1 in the cytosol, indicating that PFK-1.1 reversibly organizes into biomolecular condensates in response to cues within the cellular environment. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Prolonged conditions of energy stress during sustained hypoxia alter the biophysical properties of PFK-1.1 in vivo , affecting its viscosity and mobility within phase-separated condensates. PFK-1.1’s ability to form tetramers is critical for its capacity to form condensates in vivo , and heterologous self-association domain such as cryptochrome 2 ( CRY2) is sufficient to constitutively induce the formation of PFK-1.1 condensates. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically compartmentalize in vivo to specific subcellular compartments in response to acute energy stress via multivalency as phase-separated condensates.
0
Citation5
0
Save
34

Quantitative Theory for the Diffusive Dynamics of Liquid Condensates

Lars Hubatsch et al.Mar 8, 2021
Abstract To unravel the biological functions of membraneless liquid condensates it is crucial to develop a quantitative understanding of the physics underlying their dynamics. Key processes within such condensates are diffusion and material exchange with their environment. Experimentally, diffusive dynamics are typically probed via fluorescent labels. However, to date we lack a physics-based quantitative framework for the dynamics of labeled condensate components. Here, we derive the corresponding theory, building on the physics of phase separation, and quantitatively validate this framework via experiments. We show that using our theory we can precisely determine diffusion coefficients inside liquid condensates via a spatio-temporal analysis of fluorescence recovery after photobleaching (FRAP) experiments. We showcase the accuracy and precision of our approach by considering space- and time-resolved data of protein condensates and two different polyelectrolyte-coacervate systems. Strikingly, our theory can also be used to determine the diffusion coefficient in the dilute phase and the partition coefficient, without relying on fluorescence measurements in the dilute phase. This bypasses recently described quenching artefacts in the dense phase, which can underestimate partition coefficients by orders of magnitude. Our experimentally verified theory opens new avenues for theoretically describing molecule dynamics in condensates, measuring concentrations based on the dynamics of fluorescence intensities and quantifying rates of biochemical reactions in liquid condensates.