CV
Chiara Verpelli
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
705
h-index:
32
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse

Frank Koopmans et al.Jun 3, 2019
+70
M
P
F

Summary

 Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).
0
Citation663
0
Save
1

Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles

Anne-Kathrin Lutz et al.Jun 10, 2020
+25
B
S
A
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
1
Citation40
0
Save
0

SULTA4A1 modulates synaptic development and function by promoting the formation of PSD-95/NMDAR complex

Lorenza Culotta et al.Mar 21, 2019
+4
E
B
L
Abstract Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase, that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid Syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 towards PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathological phenotypes of SULT4A1 knockdown neurons by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.
0
Citation1
0
Save
1

Rescuing epileptic and behavioral alterations in a Dravet syndrome mouse model by inhibiting eukaryotic eEF2K

Stefania Beretta et al.Jul 9, 2021
+5
L
M
S
Abstract Dravet Syndrome is a severe childhood pharmacoresistant epileptic disorder caused mainly by mutations in the SCN1A gene, which encodes for the α1 subunit of the type I voltage-gated sodium channel (Na V 1.1), that cause imbalance between excitation and inhibition in the brain. We recently found that eEF2K knock out mice displayed enhanced GABAergic transmission and tonic inhibition and were less susceptible to epileptic seizures. In Scn1a+/- mice, a mouse model of the Dravet syndrome, we found that the activity of eEF2K/eEF2 pathway was enhanced. Then, we demonstrated that both genetic deletion and pharmacological inhibition of eEF2K were able to reduce the epileptic phenotype of Scn1a+/- mice. Interestingly we also found that motor coordination defect, memory impairments, and stereotyped behavior of the Scn1a +/- mice were reverted by eEF2K deletion. The analysis of spontaneous inhibitory postsynaptic currents (sIPSCs) suggested that the rescue of the pathological phenotype was driven by the potentiation of GABAergic synapses. Our data indicate that pharmacological inhibition of eEF2K could represent a novel therapeutic intervention for treating epilepsy and related comorbidities in the Dravet syndrome.
0

A Cre-amplifier to generate and detect genetic mosaics in vivo

Francesco Trovato et al.Jul 26, 2019
+13
E
R
F
Cre-Lox manipulation is the gold standard for cell-specific expression or knockout of selected genes. However, it is not unusual to deal with conditions of low Cre expression or transient activation, which can often go undetected by conventional Cre- reporters. We designed Beatrix, a general-purpose tool specifically devised to amplify weak Cre recombinase activity, and we used it to develop a powerful approach for the in vivo generation and detection of sparse mosaics of mutant and wild type cells.
0

Deletion of calcineurin from astrocytes reproduces proteome signature of Alzheimer's disease and epilepsy and predisposes to seizures

Laura Tapella et al.Mar 23, 2020
+18
G
G
L
Calcineurin (CaN), acting downstream of intracellular calcium signals, orchestrates cellular remodelling in many cellular types. In astrocytes, principal homeostatic cells in the central nervous system (CNS), CaN is involved in neuroinflammation and gliosis, while its role in healthy CNS or in early neuro-pathogenesis is poorly understood. Here we report that in mice with conditional deletion of CaN from GFAP-expressing astrocytes (astroglial calcineurin KO, ACN-KO), at 1 month of age, transcription was not changed, while proteome was deranged in hippocampus and cerebellum. Gene ontology analysis revealed overrepresentation of annotations related to myelin sheath, mitochondria, ribosome and cytoskeleton. Overrepresented pathways were related to protein synthesis, oxidative phosphorylation, mTOR and neurological disorders, including Alzheimer′s disease (AD) and seizure disorder. Comparison with published proteomics datasets shows significant overlap with the proteome of a familial AD mouse model and of human subjects with drug-resistant epilepsy. Strikingly, beginning from about 5 months of age ACN-KO mice develop spontaneous tonic-clonic seizures with inflammatory signature of epileptic brain. Altogether, our data suggest that the deletion of astroglial CaN produces features of neurological disorders and predisposes mice to seizures. We suggest that calcineurin in astrocytes may serve as a novel Ca2+-sensitive switch which regulates protein expression and homeostasis in the central nervous system.
0

Shank2 expression identifies a subpopulation of glycinergic interneurons involved in nociception and altered in an autism mouse model

Florian Heuvel et al.May 25, 2020
+12
H
N
F
Abstract Patients suffering from Autism Spectrum Disorders (ASD) experience disturbed nociception in form of either hyposensitivity to pain or hypersensitivity and allodynia. We have determined that Shank2-KO mice, which recapitulate the genetic and behavioural disturbances of ASD, display increased sensitivity to formalin pain and thermal, but not mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in WT mice but not in Shank2-KO mice. As consequence, nociception projection neurons in lamina I are activated in larger numbers in Shank2-KO mice. Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. Thus, we provide evidence that dysfunction of spinal cord pain processing circuits may underlie the nociceptive phenotypes in ASD patients and mouse models.