AE
Annie Espinal‐Centeno
Author with expertise in Plant Nutrient Uptake and Signaling Pathways
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptional and morpho-physiological responses of Marchantia polymorpha upon phosphate starvation

Félix Rico-Reséndiz et al.Sep 18, 2020
Abstract Phosphate (Pi) is a pivotal nutrient that constraints plant development and productivity in natural ecosystems. Land colonization by plants, more than 470 million years ago, evolved adaptive mechanisms to conquer Pi-scarce environments. However, little is known about the molecular basis underlying such adaptations at early branches of plant phylogeny. To shed light on how early divergent plants respond to Pi limitation, we analyzed the morpho-physiological and transcriptional dynamics of Marchantia polymorpha upon Pi starvation. Our phylogenomic analysis highlights some gene networks present since the Chlorophytes and others established in the Streptophytes (eg. PHR1-SPX1 and STOP1-ALMT1, respectively). At the morpho-physiological level, the response is characterized by the induction of phosphatase activity, media acidification, accumulation of auronidins, reduction of internal Pi concentration and developmental modifications of rhizoids. The transcriptional response involves the induction of Mp PHR1 , Pi transporters, lipid turnover enzymes and Mp MYB14 , an essential transcription factor for auronidins biosynthesis. Mp STOP2 up-regulation correlates with expression changes in genes related to organic acid biosynthesis and transport, suggesting preference for citrate exudation. Analysis of MpPHR1 binding sequences (P1BS) shows enrichment of this cis regulatory element in differentially expressed genes. Our study unravels the strategies, at diverse levels of organization, exerted by M. polymorpha to cope with low Pi availability. Significance Statement This study unravels the transcriptional and morphophysiological mechanisms executed by the non-vascular, and rootless, plant Marchantia polymorpha upon phosphate starvation conditions. The findings in this study shed light on the mechanisms that early land plants may have developed for the conquest of substrates poor in available phosphate, some of which are still conserved by current-day plants. Moreover, our results open several working hypotheses and novel perspectives for the study of Pi-starvation responses along plant evolution.
0
Citation1
0
Save
0

Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico.

Carolina Rocha-Arriaga et al.Jul 31, 2019
Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. During colonial times they were renamed with the antillan word maguey. This was changed again by Carl von Linne who called them Agave (a greco-latin voice for admirable). For several Mexican prehispanic cultures, Agave species were not only considered as crops, but also part of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli. This beverage represents a precolumbian biotechnological development obtained by the natural fermentation of the mead (aguamiel) from such plants. The pulque played a central role in mexican prehispanic cultures, mainly the Mexica and the Tolteca, where it was considered as sacred. For modern Mexicans, pulque is still part of their heritage and, in recent times, there has been a renewed interest in this ancient beverage, due to its high content in nutrients such as essential amino acids. We focus this study in the microbial diversity involved in pulque fermentation process, specially because it is still produced using classic antique technologies. In this work, we report the microbiome of pulque fermentation stages, using massive sequencing of the 16S rRNA gene and the internal transcribed spacer (ITS) for describing bacterial and fungal diversity and dynamics along pulque production. In this study, we are providing the most diverse catalogue of microbes during pulque production with 57 identified bacterial genus and 94 fungal species, these findings allowed us to identify core microbes resilient during pulque production which point to be potential biomarkers exclusive to each fermentation stage.
0

Multi-organ transcriptomic landscape of Ambystoma velasci metamorphosis

Palacios-Martínez Janet et al.Feb 7, 2020
Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. These organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems. We performed a transcriptional global analysis of heart, lung and gills during diverse stages of Ambystoma velasci metamorphosis. In our analyses, we identified eight gene clusters for each organ, according to the expression patterns of differentially expressed genes. We found 4,064 differentially expressed genes in the heart, 4,107 in the lung and 8,265 in the gills. Among the differentially expressed genes in the heart, we observed genes involved in the differentiation of cardiomyocytes in the interatrial zone, vasculogenesis and in the maturation of coronary vessels. In the lung, we found genes differentially expressed related to angiogenesis, alveolarization, and synthesis of the surfactant protein. In the case of the gills, the most prominent biological processes identified are degradation of extracellular matrix, apoptosis and keratin production. Our study sheds light on the transcriptional responses and the pathways involved in the transformation of the facultative metamorphic salamander A. velasci in an organ-specific manner.
1

RETINOBLASTOMA RELATED (RBR) interaction with key factors of the RNA-directed DNA methylation (RdDM) pathway

León-Ruiz Jesús et al.Jan 6, 2022
Summary Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24 -nt siRNAs) by DCL3. 24-nt siRNAs are recruited by AGO4 and serve as guides to direct AGO4 - siRNA complexes to chromatin bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog is a master regulator of cell cycle, stem cell maintenance and development. In silico exploration of RBR protein partners revealed that several members of the RdDM pathway contain a motif that confers high affinity binding to RBR, including the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2 and SUVR2. We demonstrate that RBR binds to DRM2, DRD1 and SUVR2. We also report that seedlings from loss -of-function mutants in RdDM and in RBR show similar phenotypes in the root apical meristem. Furthermore, we show that RdDM and SUVR2 targets are up-regulated in the 35S::AmiGO-RBR background. Our results suggest a novel mechanism for RBR function in transcriptional gene silencing based on the interaction with key players of the RdDM pathway and opens several new hypotheses, including the convergence of RBR-DRM2 on the transcriptional control of TEs and several cell/tissue and stage -specific target genes.
2

Functional Characterization of the Lin28/let-7 Circuit during Forelimb Regeneration in Ambystoma mexicanum and its Influence on Metabolic Reprogramming

Hugo Varela-Rodríguez et al.Jun 20, 2020
ABSTRACT The axolotl ( Ambystoma mexicanum ) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.