JB
Julie Brind’Amour
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
812
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations

Julie Brind’Amour et al.Jan 21, 2015
Combined chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) has enabled genome-wide epigenetic profiling of numerous cell lines and tissue types. A major limitation of ChIP-seq, however, is the large number of cells required to generate high-quality data sets, precluding the study of rare cell populations. Here, we present an ultra-low-input micrococcal nuclease-based native ChIP (ULI-NChIP) and sequencing method to generate genome-wide histone mark profiles with high resolution from as few as 103 cells. We demonstrate that ULI-NChIP-seq generates high-quality maps of covalent histone marks from 103 to 106 embryonic stem cells. Subsequently, we show that ULI-NChIP-seq H3K27me3 profiles generated from E13.5 primordial germ cells isolated from single male and female embryos show high similarity to recent data sets generated using 50–180 × more material. Finally, we identify sexually dimorphic H3K27me3 enrichment at specific genic promoters, thereby illustrating the utility of this method for generating high-quality and -complexity libraries from rare cell populations. Standard ChIP-seq protocols require large numbers of cells for high-quality datasets, limiting the application of this technique on rare cell types. Here, Brind’Amour et al. introduce an ultra-low-input ChIP-seq protocol to generate maps of covalent histone marks from as few as 1,000 cells.
0
Citation356
0
Save
0

Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells

Sheng Liu et al.Sep 15, 2014
Transcription of endogenous retroviruses (ERVs) is inhibited by de novo DNA methylation during gametogenesis, a process initiated after birth in oocytes and at approximately embryonic day 15.5 (E15.5) in prospermatogonia. Earlier in germline development, the genome, including most retrotransposons, is progressively demethylated. Young ERVK and ERV1 elements, however, retain intermediate methylation levels. As DNA methylation reaches a low point in E13.5 primordial germ cells (PGCs) of both sexes, we determined whether retrotransposons are marked by H3K9me3 and H3K27me3 using a recently developed low-input ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) method. Although these repressive histone modifications are found predominantly on distinct genomic regions in E13.5 PGCs, they concurrently mark partially methylated long terminal repeats (LTRs) and LINE1 elements. Germline-specific conditional knockout of the H3K9 methyltransferase SETDB1 yields a decrease of both marks and DNA methylation at H3K9me3-enriched retrotransposon families. Strikingly, Setdb1 knockout E13.5 PGCs show concomitant derepression of many marked ERVs, including intracisternal A particle (IAP), ETn, and ERVK10C elements, and ERV-proximal genes, a subset in a sex-dependent manner. Furthermore, Setdb1 deficiency is associated with a reduced number of male E13.5 PGCs and postnatal hypogonadism in both sexes. Taken together, these observations reveal that SETDB1 is an essential guardian against proviral expression prior to the onset of de novo DNA methylation in the germline.
0
Citation237
0
Save
0

Evolution of imprinting via lineage-specific insertion of retroviral promoters

Aaron Bogutz et al.Aug 5, 2019
Imprinted genes are expressed from a single parental allele. In mammals, this unusual mode of transcription generally depends on the epigenetic silencing of one allele by DNA methylation (DNAme) established in the germline. While many species-specific imprinted orthologues have been documented in eutherians, the molecular mechanisms underlying the evolutionary switch from biallelic to imprinted expression are currently unknown. During mouse oogenesis, gametic differentially methylated regions (gDMRs) acquire DNAme in a process guided by transcription. Here we show that transcription initiating in proximal lineage-specific endogenous retroviruses (ERVs) is likely responsible for DNAme established in oocytes at 4/6 mouse-specific and 17/110 human-specific maternal imprinted gDMRs (igDMRs). The latter can be further divided into Catarrhini (Old World monkeys and apes)- or Hominoidea (ape)-specific igDMRs, which are embedded within transcription units initiating in ERVs specific to these primate lineages. Using CRISPR-Cas9 mutagenesis, we deleted the relevant murine-specific ERVs upstream of the maternally methylated genes Impact and Slc38a4 . Strikingly, imprinting at these genes was lost in the offspring of females harboring these deletions and biallelic expression was observed. Our work reveals a novel evolutionary mechanism whereby maternally silenced genes arise from biallelically expressed progenitors.
0

Maternal DNMT3A-dependent de novo methylation of the zygotic paternal genome inhibits gene expression in the early embryo

Albert ALBERT et al.Mar 28, 2020
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. Following fertilization, the paternal genome undergoes widespread DNAme loss before the first S-phase. Paradoxically, recent mass spectrometry analysis revealed that a low level of de novo DNAme occurs exclusively on the zygotic paternal genome. However, the loci involved and impact on genic transcription was not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing (WGBS) data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome in 2-cell embryos. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with zygotic paternal DNAme acquisition (PDA), many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Strikingly, PDA is lost following maternal deletion of Dnmt3a . Furthermore, a subset of promoters showing PDA which are normally transcribed from the paternal allele in blastocysts show premature transcription at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover an unexpected role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome.
0

Histone H3K4 and H3K36 methylation promotes recruitment, but not activity, of the NuA3 histone acetyltransferase complex in S. cerevisiae

Benjamín Martín et al.Dec 23, 2016
Histone post-translational modifications (PTMs) alter chromatin structure by promoting the interaction of chromatin-modifying complexes with nucleosomes. The majority of chromatin-modifying complexes contain multiple domains that preferentially interact with modified histones, leading to speculation that these domains function in concert to target nucleosomes with distinct combinations of histone PTMs. In S. cerevisiae, the NuA3 histone acetyltransferase complex contains three domains, the PHD finger in Yng1, the PWWP domain in Pdp3, and the YEATS domain in Taf14, which in vitro bind to H3K4 methylation, H3K36 methylation, and acetylated and crotonylated H3K9 respectively. However the relative in vivo contributions of these histone PTMs in targeting NuA3 is unknown. Here we show that in vivo H4K4 and H3K36 methylation, but not acetylated or crotonylated H3K9, recruit NuA3 to transcribed genes. Through genome-wide colocalization and by mutational interrogation, we demonstrate that the PHD finger of Yng1, and the PWWP domain of Pdp3 independently target NuA3 to H3K4 and H3K36 methylated chromatin respectively. In contrast, we find no evidence to support the YEATS domain of Taf14 functioning in NuA3 recruitment. Collectively our results suggest that the presence of multiple histone-PTM binding domains within NuA3, rather than restricting it to nucleosomes containing distinct combinations of histone PTMs, can serve to increase the range of nucleosomes bound by the complex. Interestingly however, the simple presence of NuA3 is insufficient to ensure acetylation of the associated nucleosomes, suggesting a secondary level of acetylation regulation that does not involve control of HAT-nucleosome interactions.