Hi-C has become a popular technique in recent genome assembly projects. Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs in draft genomes, resulting in chromosome-level assemblies. However, application of this approach is currently hampered by a lack of robust programs that are capable of effectively treating this type of data, particularly open source programs. We developed instaGRAAL, a complete overhaul of the GRAAL program, which has adapted the latter to allow efficient assembly of large genomes. Both GRAAL, and instaGRAAL use a Markov Chain Monte Carlo algorithm to perform Hi-C scaffolding, but instaGRAAL features a number of improvements including a modular polishing approach that optionally integrates independent data. To validate the program, we used it to generate chromosome-level assemblies for two brown algae, Desmarestia herbacea and the model Ectocarpus sp., and quantified improvements compared to the initial draft for the latter. Overall, instaGRAAL is a program able to generate, using default parameters with minimal human intervention, near-complete assemblies.