OV
Oliver Vanderpoorten
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

2-photon-fabricated nano-fluidic traps for extended detection of single macromolecules and colloids in solution

Oliver Vanderpoorten et al.Nov 19, 2021
+9
G
A
O
Abstract The analysis of nanoscopic species, such as proteins and colloidal assemblies, at the single-molecule level has become vital in many areas of fundamental and applied research. Approaches to increase the detection timescales for single molecules in solution without immobilising them onto a substrate surface and applying external fields are much sought after. Here we present an easy-to-implement and versatile nanofluidics-based approach that enables increased observational-timescale analysis of single biomacromolecules and nanoscale colloids in solution. We use two-photon-based hybrid lithography in conjunction with soft lithography to fabricate nanofluidic devices with nano-trapping geometries down to 100 nm in height. We provide a rigorous description and characterisation of the fabrication route that enables the writing of nanoscopic 3D structures directly in photoresist and allows for the integration of nano-trapping and nano-channel geometries within micro-channel devices. Using confocal fluorescence burst detection, we validated the functionality of particle confinement in our nano-trap geometries through measurement of particle residence times. All species under study, including nanoscale colloids, α-synuclein oligomers, and double-stranded DNA, showed a three to five-fold increase in average residence time in the detection volume of nano-traps, due to the additional local steric confinement, in comparison to free space diffusion in a nearby micro-channel. Our approach thus opens-up the possibility for single-molecule studies at prolonged observational timescales to analyse and detect nanoparticles and protein assemblies in solution without the need for surface immobilisation.
6
Paper
Citation1
0
Save
0

A waveguide imaging platform for live-cell TIRF imaging of neurons over large fields of view

Ida Opstad et al.Dec 13, 2019
+11
M
F
I
Large fields of view (FOVs) in total internal reflection fluorescence microscopy (TIRFM) via waveguides have been shown to be highly beneficial for single molecule localisation microscopy on fixed cells and have also been demonstrated for short-term live-imaging of robust cell types, but not yet for delicate primary neurons nor over extended periods of time. Here, we present a waveguide-based TIRFM set-up for live-cell imaging of demanding samples. Using the developed microscope, referred to as the ChipScope, we demonstrate successful culturing and imaging of fibroblasts, primary rat hippocampal neurons and axons of Xenopus retinal ganglion cells (RGC). The high contrast and gentle illumination mode provided by TIRFM coupled with the exceptionally large excitation areas and superior illumination homogeneity offered by photonic waveguides have potential for a wide application span in neuroscience applications.
9

α-synuclein fibril and synaptic vesicle interactions lead to vesicle destruction and increased uptake into neurons

Amberley Stephens et al.Oct 6, 2022
+9
C
A
A
Abstract Monomeric alpha-synuclein (aSyn) is a well characterised as a lipid binding protein. aSyn is known to form amyloid fibrils which are also localised with lipids and organelles in so called Lewy bodies, insoluble structures found in Parkinson’s disease patient’s brains. It is still unclear under which conditions the aSyn-lipid interaction can start to become pathological. Previous work to address pathological interactions has focused on using synthetic lipid membranes, which lack the complexity of physiological lipid membranes which not only have a more complex lipid composition, but also contain lipid interacting proteins. Here, we investigate how either monomeric or fibrillar aSyn interact with physiological synaptic vesicles (SV) isolated from rodent brain. Using small angle neutron scattering and high-resolution imaging we observe that aSyn fibrils disintegrate SV, whereas aSyn monomers cause clustering of SV. Furthermore, SV enhance the aggregation rate of aSyn, however increasing the SV:aSyn ratio causes a reduction in aggregation propensity. SV lipids appear as an integrated part of aSyn fibrils and while the fibril morphology differs to aSyn fibrils alone, the core fibril structure remains the same. We finally demonstrate that lipid-associated aSyn fibrils are more easily taken up into cortical i 3 Neurons derived from induced pluripotent stem cells. Our study sheds light on differences between interactions of aSyn with synthetic lipid vesicles and physiological SV. We show how aSyn fibrils may enhance pathology by disintegrating SV, which in turn may have fatal consequences for neurons. Furthermore, disease burden may additionally be impacted by an increased uptake of lipid-associated aSyn by neurons, leading to more SV damage and enhancing aSyn aggregation.
0

OptiJ: Open-source optical projection tomography of large organ samples

Pedro Ramirez et al.Jun 2, 2019
+19
O
J
P
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 μm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.
6

Single-molecule sizing through nano-cavity confinement

Raphaël Jacquat et al.Dec 13, 2021
+8
Q
G
R
Abstract An approach relying on nano-cavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nano-cavity diffusional sizing (NDS), measures particle residence times within fluidic nano-cavities to determine their hydrodynamic radii. Using theoretical modeling and simulation, we show that the residence time of particles within nano-cavities above a critical timescale depends on the diffusion coefficient of the particle, which allows estimation of the particle’s size. We demonstrate this approach experimentally through measurement of particle residence times within nano-fluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential application in nanobiotechnology, biophysics, and clinical diagnostics. Table of content graphic