PS
Paul Steinbach
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
5,037
h-index:
17
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A monomeric red fluorescent protein

Robert Campbell et al.Jun 11, 2002
+4
A
O
R
Civil infrastructure will be essential to face the interlinked existential threats of climate change and rising resource demands while ensuring a livable Anthropocene for all. However, conventional infrastructure planning largely neglects the ...
0
Paper
Citation2,333
0
Save
0

Improving the photostability of bright monomeric orange and red fluorescent proteins

Nathan Shaner et al.May 4, 2008
+4
M
M
N
All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.
0

Characterization of Engineered Channelrhodopsin Variants with Improved Properties and Kinetics

John Lin et al.Mar 1, 2009
R
P
M
J
Channelrhodopsin 2 (ChR2), a light-activated nonselective cationic channel from Chlamydomonas reinhardtii, has become a useful tool to excite neurons into which it is transfected. The other ChR from Chlamydomonas, ChR1, has attracted less attention because of its proton-selective permeability. By making chimeras of the transmembrane domains of ChR1 and ChR2, combined with site-directed mutagenesis, we developed a ChR variant, named ChEF, that exhibits significantly less inactivation during persistent light stimulation. ChEF undergoes only 33% inactivation, compared with 77% for ChR2. Point mutation of Ile170 of ChEF to Val (yielding “ChIEF”) accelerates the rate of channel closure while retaining reduced inactivation, leading to more consistent responses when stimulated above 25 Hz in both HEK293 cells and cultured hippocampal neurons. In addition, these variants have altered spectral responses, light sensitivity, and channel selectivity. ChEF and ChIEF allow more precise temporal control of depolarization, and can induce action potential trains that more closely resemble natural spiking patterns.
0

Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome

Xiaokun Shu et al.May 7, 2009
+4
M
A
X
Infrared Vision Proteins from jellyfish and corals that fluoresce in the visible wavelength range have revolutionized optical imaging of cells. However, these wavelengths are absorbed by hemoglobin, water, and lipids and the proteins are thus not appropriate for deep-tissue imaging. Now Shu et al. (p. 804 ) have engineered a bacteriophytochrome from Deinococcus radiodurans that incorporates biliverdin as the chromophore, to fluoresce with excitation and emission spectra of 648 and 708 nanometers, respectively. These infrared fluorescent proteins are expressed well in mammalian cells and mice, and can be used for whole-body imaging.
0

Evolution of new nonantibody proteins via iterative somatic hypermutation

Lei Wang et al.Nov 19, 2004
R
P
W
L
B lymphocytes use somatic hypermutation (SHM) to optimize immunoglobulins. Although SHM can rescue single point mutations deliberately introduced into nonimmunoglobulin genes, such experiments do not show whether SHM can efficiently evolve challenging novel phenotypes requiring multiple unforeseeable mutations in nonantibody proteins. We have now iterated SHM over 23 rounds of fluorescence-activated cell sorting to create monomeric red fluorescent proteins with increased photostability and far-red emissions (e.g., 649 nm), surpassing the best efforts of structure-based design. SHM offers a strategy to evolve nonantibody proteins with desirable properties for which a high-throughput selection or viable single-cell screen can be devised.
0
Citation406
0
Save
0

Structure-function analysis of the maize bulliform cell cuticle and its role in dehydration and leaf rolling

Susanne Matschi et al.Feb 7, 2020
+6
R
M
S
The cuticle is a hydrophobic layer on the outer surface plant shoots, which serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Analysis of natural variation was used to relate bulliform strip pattering to leaf rolling rate, providing evidence of a role for bulliform cells in leaf rolling. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants vs. wild type siblings, provided evidence that bulliform cells lose water across the cuticle more rapidly than other epidermal cell types. Bulliform cell cuticles have a distinct ultrastructure, and differences in cutin monomer content and composition, compared to other leaf epidermal cells. We hypothesize that this cell type-specific cuticle is more water permeable than the epidermal pavement cell cuticle, facilitating the function of bulliform cells in stress-induced leaf rolling observed in grasses.