SD
Samuel Danziger
Author with expertise in Diagnosis and Treatment of Multiple Myeloma
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
1
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple Myeloma DREAM Challenge Reveals Epigenetic RegulatorPHF19As Marker of Aggressive Disease

Mike Mason et al.Aug 22, 2019
Abstract While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients do not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have been developed, but each model uses a different combination of genes and often involve assaying many genes making them difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models. This effort lead to more robust predictors and found that incorporating specific demographic and clinical features improved gene expression-based models of high risk. Furthermore, post challenge analysis identified a novel expression-based risk marker and histone modifier, PHF19 , which featured prominently in several independent models. Lastly, we show that a simple four feature predictor composed of age, International Staging System stage (ISS), and expression of PHF19 and MMSET performs similarly to more complex models with many more gene expression features included. Key points Most comprehensive and unbiased assessment of prognostic biomarkers in MM resulting in a robust and parsimonious model. Identification of PHF19 as the expression based biomarker most strongly associated with rapid progression in MM patients.
0
Citation1
0
Save
0

Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast

Zhuo Wang et al.Nov 11, 2016
Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced REgulation And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.
0

ADAPTS: Automated Deconvolution Augmentation of Profiles for Tissue Specific cells

Samuel Danziger et al.May 10, 2019
Immune cell infiltration of tumors can be an important component for determining patient outcomes, e.g. by inferring immune cell presence by deconvolving gene expression data drawn from a heterogenous mix of cell types. One particularly powerful family of deconvolution techniques uses signature matrices of genes that uniquely identify each cell type as determined from cell type purified gene expression data. Many methods of this type have been recently published, often including new signature matrices appropriate for a single purpose, such as investigating a specific type of tumor. The package ADAPTS helps users make the most of this expanding knowledge base by introducing a framework for cell type deconvolution. ADAPTS implements modular tools for customizing signature matrices for new tissue types by adding custom cell types or building new matrices de novo , including from single cell RNAseq data. It includes a common interface to several popular deconvolution algorithms that use a signature matrix to estimate the proportion of cell types present in heterogenous samples. ADAPTS also implements a novel method for clustering cell types into groups that are hard to distinguish by deconvolution and then re-splitting those clusters using hierarchical deconvolution. We demonstrate that the techniques implemented in ADAPTS improve the ability to reconstruct the cell types present in a single cell RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use in R on CRAN and GitHub.
0

Genetic program activity delineates risk, relapse, and therapy responsiveness in Multiple Myeloma

Matthew Wall et al.Apr 1, 2020
Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to their previous therapies. Although many therapies exist with diverse mechanisms of action, it is not yet clear how the differences in MM biology across patients impacts the likelihood of success for existing therapies and those in the pipeline. Therefore, we not only need the ability to predict which patients are at high risk for disease progression, but also a means to understand the mechanisms underlying their risk. We hypothesized that knowledge of the biological networks that give rise to MM, specifically the transcriptional regulatory network (TRN) and the mechanisms by which mutations impact gene regulation, would enable improved predictions of disease progression and actionable insights for treatment. Here we present a method to infer TRNs from multi-omics data and apply it to the generation of a MM TRN that links chromosomal abnormalities and somatic mutations to downstream effects on gene expression via perturbation of transcriptional regulators. We find that 141 genetic programs underlie the disease and that the activity profile of these programs fall into one of 25 distinct transcriptional states. These transcriptional signatures prove to be more predictive of outcomes than do mutations and reveal plausible mechanisms for relapse, including the establishment of an immuno-suppressive microenvironment. Moreover, we observe subtype-specific vulnerabilities to interventions with existing drugs and motivate the development of new targeted therapies that appear especially promising for relapsed refractory MM.
10

A system-level gene regulatory network model for Plasmodium falciparum

Maxwell Neal et al.Aug 10, 2020
Abstract Many of the gene regulatory processes of Plasmodium falciparum , the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism’s gene regulatory network, we generated a system-level model of Plasmodium falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within Plasmodium falciparum . Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.