CH
Colin Hemez
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
4
h-index:
5
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations

Colin Hemez et al.Jun 1, 2020
+3
A
F
C
Abstract Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic’s mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that whether a drug acts as a bacteriostatic or bactericidal agent has little influence on resistance selection. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain’s minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this “secondary mutation selection window” could safeguard against the emergence of high-fitness resistant strains during treatment.
1
Citation2
0
Save
0

Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells

Alexander Sousa et al.Jul 10, 2024
+9
L
C
A
Abstract Prime editing (PE) enables precise and versatile genome editing without requiring double-stranded DNA breaks. Here we describe the systematic optimization of PE systems to efficiently correct human cystic fibrosis (CF) transmembrane conductance regulator ( CFTR ) F508del, a three-nucleotide deletion that is the predominant cause of CF. By combining six efficiency optimizations for PE—engineered PE guide RNAs, the PEmax architecture, the transient expression of a dominant-negative mismatch repair protein, strategic silent edits, PE6 variants and proximal ‘dead’ single-guide RNAs—we increased correction efficiencies for CFTR F508del from less than 0.5% in HEK293T cells to 58% in immortalized bronchial epithelial cells (a 140-fold improvement) and to 25% in patient-derived airway epithelial cells. The optimizations also resulted in minimal off-target editing, in edit-to-indel ratios 3.5-fold greater than those achieved by nuclease-mediated homology-directed repair, and in the functional restoration of CFTR ion channels to over 50% of wild-type levels (similar to those achieved via combination treatment with elexacaftor, tezacaftor and ivacaftor) in primary airway cells. Our findings support the feasibility of a durable one-time treatment for CF.
0
Citation2
0
Save
1

Computational design and construction of an Escherichia coli strain engineered to produce a non-standard amino acid

Ali Zomorrodi et al.Apr 2, 2022
+3
P
C
A
Summary Introducing heterologous pathways into host cells constitutes a promising strategy for synthesizing nonstandard amino acids (nsAAs) to enable the production of proteins with expanded chemistries. However, this strategy has proven challenging as the expression of heterologous pathways can disrupt cellular homeostasis of the host cell. Here, we sought to optimize the heterologous production of the nsAA para-aminophenylalanine (pAF) in Escherichia coli . First, we incorporated a heterologous pAF biosynthesis pathway into a genome-scale model of E. coli metabolism, and computationally identified metabolic interventions in the host’s native metabolism to improve pAF production. Next, we explored different ways of imposing these flux interventions experimentally and found that the upregulation of flux in chorismate biosynthesis pathway through the elimination of feedback inhibition mechanisms could significantly raise pAF titers (∼20 fold) while maintaining a reasonable pAF yield-growth rate trade-off. Overall, this study provides a promising strategy for the biosynthesis of nsAAs in engineered cells.
4

High rifampicin peak plasma concentrations accelerate the slow phase of bacterial decline in tuberculosis patients: evidence for heteroresistance

Antal Martinecz et al.Jun 7, 2022
+4
A
M
A
Abstract Background Antibiotic treatments are often associated with a late slowdown in bacterial killing. This separates the killing of bacteria into at least two distinct phases: a quick phase followed by a slower phase, the latter of which is linked to treatment success. Current mechanistic explanations for the in vitro slowdown are either antibiotic persistence or heteroresistance. Persistence is defined as the switching back and forth between susceptible and non-susceptible states, while heteroresistance is defined as the coexistence of bacteria with heterogeneous susceptibilities. Both are also thought to cause a slowdown in the decline of bacterial populations in patients and therefore complicate and prolong antibiotic treatments. Reduced bacterial death rates over time are also observed within tuberculosis patients, yet the mechanistic reasons for this are unknown and therefore the strategies to mitigate them are also unknown. Methods and Findings We analyse a dose ranging trial for rifampicin in tuberculosis patients and show that there is a slowdown in the decline of bacteria. We show that the late phase of bacterial killing depends more on the peak drug concentrations than the total drug exposure. We compare these to pharmacokinetic-pharmacodynamic models of rifampicin heteroresistance and persistence. We find that the observation on the slow phase’s dependence on pharmacokinetic measures, specifically peak concentrations are only compatible with models of heteroresistance and incompatible with models of persistence. The quantitative agreement between heteroresistance models and observations is very good . To corroborate the importance of the slowdown, we validate our results by estimating the time to sputum culture conversion and compare the results to a different dose ranging trial. Conclusions Our findings indicate that higher doses, specifically higher peak concentrations may be used to optimize rifampicin treatments by accelerating bacterial killing in the slow phase. It adds to the growing body of literature supporting higher rifampicin doses for shortening tuberculosis treatments.
0

Genomically recoded Escherichia coli with optimized functional phenotypes

Colin Hemez et al.Aug 29, 2024
+3
F
K
C
Abstract Genomically recoded organisms hold promise for many biotechnological applications, but they may exhibit substantial fitness defects relative to their non-recoded counterparts. We used targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness impairment in a model recoded organism, Escherichia coli C321.ΔA. We found that defects in isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12 lineage strains, elicited profound fitness impairments in C321.ΔA, suggesting that genome recoding exacerbates suboptimal traits present in precursor strains. By correcting these and other C321.ΔA-specific mutations, we engineered C321.ΔA strains with doubling time reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.ΔA lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy for the rapid and precise phenotypic optimization of genomically recoded organisms and other engineered microbes.