WN
William Nobis
Author with expertise in Epilepsy and Seizures
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhanced synaptic transmission in the extended amygdala and altered excitability in an extended amygdala to brainstem circuit in a Dravet syndrome mouse model

Wen Yan et al.Sep 1, 2020
ABSTRACT Objective Dravet syndrome (DS) is a severe, early-onset epilepsy with an increased incidence of sudden death. Evidence of interictal breathing deficits in DS suggest that alterations in subcortical projections to brainstem nuclei may exist, which might be driving comorbidities in DS. The aim of this study was to determine if a subcortical structure, the bed nucleus of the stria terminalis (BNST) in the extended amygdala, is activated by seizures, exhibits changes in excitability, and expresses any alterations in neurons projecting to a brainstem nucleus associated with respiration, stress response and homeostasis. Methods Experiments were conducted using F1 mice generated by breeding 129.Scn1a +/- mice with wildtype C57BL/6J mice. Immunohistochemistry was performed to quantify neuronal c-fos activation in DS mice after observed spontaneous seizures. Whole cell patch clamp and current clamp electrophysiology recordings were conducted to evaluate changes in intrinsic and synaptic excitability in the BNST. Results Spontaneous seizures in DS mice significantly enhanced neuronal c-fos expression in the BNST. Further, the BNST had altered AMPA/NMDA postsynaptic receptor composition and showed changes in spontaneous neurotransmission, with greater excitation and decreased inhibition. BNST to parabrachial nucleus (PBN) projection neurons exhibited intrinsic excitability in wildtype mice, while these projection neurons were hypoexcitable in DS mice. Significance The findings suggest that there is altered excitability in neurons of the BNST, including BNST to PBN projection neurons, in DS mice. These alterations could potentially be driving comorbid aspects of DS outside of seizures, including respiratory dysfunction and sudden death. SIGNIFICANCE STATEMENT Dravet syndrome (DS) is an early-onset epilepsy with an increased risk of sudden death. We determined that there are alterations in a subcortical nucleus, the bed nucleus of the stria terminalis (BNST) of the extended amygdala, in a murine DS model. The BNST is involved in stress, anxiety, feeding, and respiratory function. We found enhanced activation in the BNST after seizures and alterations in basal synaptic neurotransmission–with enhanced spontaneous excitatory and decreased spontaneous inhibitory postsynaptic events. Evaluating those neurons that project to the parabrachial nucleus (PBN), a nucleus with multiple homeostatic roles, we found them to be hypoexcitable in DS. Alterations in BNST to brainstem projections could be implicated in comorbid aspects of DS, including respiratory dysfunction and sudden death.
1

Glucagon-like peptide-1 receptor differentially controls mossy cell activity across the dentate gyrus longitudinal axis

Alex Steiner et al.Mar 17, 2022
Abstract Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo , strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. What is not well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and hippocampal-dependent mnemonic function, might regulate MC function through selective expression of its receptor, GLP-1R. RNA-seq demonstrated that most Glp1r in hippocampal principal neurons is expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r -expressing hilar neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r , and Glp1r was also expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral administration of the GLP-1R agonist exendin-4 (5 μg/kg) increased cFos expression in ventral but not dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, this study identifies a potential neurohormonal mechanism linking a critically important satiety signal with activity of MCs in the ventral DG that might have functional effects on learning and memory during distinct states.
1

Disruption of synaptic transmission in the Bed Nucleus of the Stria Terminalis reduces seizure-induced death in DBA/1 mice and alters brainstem E/I balance

Maya Xia et al.Dec 24, 2021
ABSTRACT Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic and hypoxic ventilatory response. This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of seizure-induced respiratory arrest, potentially through its outputs to brainstem respiratory regions. SUMMARY STATEMENT This study used a viral expression technique to disrupt synaptic output in the bed nucleus of the stria terminalis (BNST) of DBA/1 audiogenic seizure mice. Inactivating the BNST significantly improved survival following seizures and altered brainstem excitation/inhibition balance.