NN
Noele Norris
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria

Noele Norris et al.Oct 8, 2020
R
V
N
N
Abstract Marine heterotrophic bacteria use a spectrum of nutrient uptake strategies, from that of copiotrophs—which dominate in nutrient-rich environments—to that of oligotrophs—which dominate in nutrient-poor environments. While copiotrophs possess numerous phosphotransferase systems (PTS), oligotrophs lack PTS and rely on ATP-binding cassette (ABC) transporters, which use binding proteins. Here we present a molecular-level model that explains the dichotomy between oligotrophs and copiotrophs as the consequence of trade-offs between PTS and ABC transport. When we approximate ABC transport in Michaelis–Menten form, we find, contrary to the canonical formulation, that its half-saturation concentration K M is not a constant but instead a function of binding protein abundance. Thus, oligotrophs can attain nanomolar K M values using binding proteins with micromolar dissociation constants and while closely matching transport and metabolic capacities. However, this requires large periplasms and high abundances of binding proteins, whose slow diffusion limits uptake rate. We conclude that the use of binding proteins is critical for oligotrophic survival yet severely constrains maximal growth rates, thus fundamentally shaping the divergent evolution of oligotrophs and copiotrophs.
0
Citation2
0
Save
1

Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake

Noele Norris et al.Nov 6, 2021
+6
J
U
N
Abstract To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which is transported into the periplasm via a specific porin. Previous observations have shown that under various conditions E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here we present results from experiments and modeling showing that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits dynamic sensing range. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue. Statement of Significance Bacterial chemotaxis is among the best-studied systems in biology and is paradigmatic of the mechanisms used by cells to link sensory inputs with regulated responses, thus providing insight into the ecological basis of cellular physiology. Here we present a mechanistic chemotaxis model that describes how the regulation of the transport of a sugar into and out of the cell’s periplasm affects the cell’s motile response to that sugar. Based on observations from population-level chemotaxis assays, we uncover an ecologically relevant trade-off between sensing and uptake. The general finding of this work is that, while high-affinity transport allows for higher uptake rates, it can severely limit the cell’s dynamic sensing range.