MH
Myriam Haltalli
Author with expertise in Acute Myeloid Leukemia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
279
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The metalloproteinase inhibitor Prinomastat reduces AML growth, prevents stem cell loss and improves chemotherapy effectiveness

Chiara Pirillo et al.Dec 1, 2020
Abstract Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. Its prognosis remains poor, highlighting the need for new therapeutic and precision medicine approaches. AML symptoms often include cytopenias, linked to loss of healthy hematopoietic stem and progenitor cells (HSPCs). The mechanism behind HSPC decline is complex and still poorly understood. Here, intravital microscopy (IVM) of a well-established experimental model of AML allows direct observation of the interactions between healthy and malignant cells in the bone marrow (BM), suggesting that physical dislodgment of healthy cells by AML through damaged vasculature may play an important role. Numerous human leukemia types, particularly MLL-AF9 samples, show high expression levels of multiple matrix metalloproteinases (MMPs). Therefore, we evaluate the therapeutic potential of the MMP inhibitor (MMPI) prinomastat. IVM analyses of treated mice reveal reduced vascular permeability and healthy cell clusters in circulation, and lower AML cell speed. Furthermore, treated mice have decreased BM infiltration, increased retention of healthy HSPCs in the BM and increased survival following chemotherapy. Overall, our results suggest that MMPIs could be a promising complementary therapy to reduce AML growth and limit the loss of HSPC and BM vascular damage caused by MLL-AF9 and possibly other AML subtypes.
0
Citation2
0
Save
1

Intrinsic and extrinsic regulation of human fetal bone marrow haematopoiesis and perturbations in Down syndrome

Laura Jardine et al.Jun 25, 2021
Abstract Throughout postnatal life, haematopoiesis in the bone marrow (BM) maintains blood and immune cell production. Haematopoiesis first emerges in human BM at 12 post conception weeks while fetal liver (FL) haematopoiesis is still expanding. Yet, almost nothing is known about how fetal BM evolves to meet the highly specialised needs of the fetus and newborn infant. Here, we detail the development of fetal BM including stroma using single cell RNA-sequencing. We find that the full blood and immune cell repertoire is established in fetal BM in a short time window of 6-7 weeks early in the second trimester. Fetal BM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell (DC) subsets emerging for the first time. B-lymphocyte expansion occurs, in contrast with erythroid predominance in FL at the same gestational age. We identify transcriptional and functional differences that underlie tissue-specific identity and cellular diversification in fetal BM and FL. Finally, we reveal selective disruption of B-lymphocyte, erythroid and myeloid development due to cell intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in the fetal BM from constitutional chromosome anomaly Down syndrome during this crucial developmental time window.
1
Citation2
0
Save
55

A time and single-cell resolved model of hematopoiesis

Iwo Kuciński et al.Sep 8, 2022
Abstract The paradigmatic tree model of hematopoiesis is increasingly recognized to be limited as it is based on heterogeneous populations and largely inferred from non-homeostatic cell fate assays. Here, we combine persistent labeling with time-series single-cell RNA-Seq to build the first real- time, quantitative model of in vivo tissue dynamics for any mammalian organ. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between single cell molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of neutrophil differentiation, illustrating how the new model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a Kinetoscope allows sequential images to merge into a movie. We posit that this approach is broadly applicable to empower single cell genomics to reveal important tissue scale dynamics information. Highlights Cell flux analysis reveals high-resolution kinetics of native bone marrow hematopoiesis Quantitative model simulates cell behavior in real-time and connects it with gene expression patterns Distinct lineage-affiliated progenitors have unique self-renewal and differentiation properties Transplanted HSCs display accelerated stage- and lineage-specific differentiation
0

Unveiling Clonal Cell Fate and Differentiation Dynamics: A Hybrid NeuralODE-Gillespie Approach

Mingze Gao et al.Jul 11, 2024
Recent lineage tracing single-cell techniques (LT-scSeq), e.g., the Lineage And RNA RecoverY (LARRY) barcoding system, have enabled clonally resolved interpretation of differentiation trajectories. However, the heterogeneity of clone-specific kinetics remains understudied, both quantitatively and in terms of interpretability, thus limiting the power of bar-coding systems to unravel how heterogeneous stem cell clones drive overall cell population dynamics. Here, we present CLADES, a NeuralODE-based framework to faithfully estimate clone-specific kinetics of cell states from newly generated and publicly available human cord blood LARRY LT-scSeq data. By incorporating a stochastic simulation algorithm (SSA) and differential expression gene (DEGs) analysis, CLADES yields cell division dynamics across differentiation timecourses and fate bias predictions for the early progenitor cells. Moreover, clone-level quantitative behaviours can be grouped into characteristic types by pooling individual clones into meta-clones. By benchmarking with CoSpar, we found that CLADES improves fate bias prediction accuracy at the meta-clone level. In conclusion, we report a broadly applicable approach to robustly quantify differentiation kinetics using meta-clones while providing valuable insights into the fate bias of cellular populations for any organ system maintained by a pool of heterogeneous stem and progenitor cells.
0

Malaria-induced remodelling of the bone marrow microenvironment mediates loss of haematopoietic stem cell function

Myriam Haltalli et al.Nov 22, 2018
Severe infections are a major source of stress on haematopoiesis, where consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow niches, which have been shown to be altered during ageing and haematopoietic malignancies. Whether the bone marrow (BM) microenvironment plays a role in mediating the effects of infection on HSCs remains an open question. Here we used an experimental murine model of malaria coupled with intravital microscopy, single cell RNA-Seq, mathematical modelling and transplantation assays to obtain a quantitative understanding of the proliferation dynamics of haematopoietic stem and progenitor cells (HSPCs) during Plasmodium infection. We uncovered that during Plasmodium infection the HSC compartment turns over significantly faster than in steady state, and that a global interferon response and loss of functional HSCs are linked to alterations in BM endothelium function and osteoblasts number. Finally, interventions that targeted osteoblasts uncoupled HSC proliferation and function thus opening up new avenues for therapeutic interventions that may improve the health of survivors of severe infections.