RM
Rachel Montpetit
Author with expertise in Microbial Interactions in Wine Production and Flavor
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
3
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Transcriptomics provides a genetic signature of vineyard site with insight into vintage-independent regional wine characteristics

Taylor Reiter et al.Jan 8, 2021
+11
S
R
T
Abstract In wine fermentations, the metabolic activity of both Saccharomyces cerevisiae and non- Saccharomyces organisms impact wine chemistry. Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur non-randomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. We used ribosomal DNA amplicon sequencing of grape must and RNA sequencing of primary fermentations to profile fermentations from 15 vineyards in California and Oregon across two vintages. We find that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing did not correlate with transcript abundance from those organisms within the RNA sequencing data, suggesting that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing are not active during these inoculated fermentations. Additionally, we detect genetic signatures of vineyard site and region during fermentation that are predictive for each vineyard site, identifying nitrogen, sulfur, and thiamine metabolism as important factors for distinguishing vineyard site and region. Importance The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. We show that while the presence of microbial DNA is associated with wine region and vineyard site, the presence of microbial DNA is not associated with gene expression of those microorganisms during fermentation. We further show that detected gene expression signatures associated with wine region and vineyard site provide a means to address differences in fermentations that may drive regional distinctiveness.
8
Citation2
0
Save
6

Saccharomyces cerevisiaegene expression during fermentation of Pinot noir wines at industrially relevant scale

Taylor Reiter et al.Jan 12, 2021
+8
S
R
T
Abstract During a wine fermentation, Saccharomyces cerevisiae transforms grape must through metabolic activities that generate ethanol and other compounds. Thousands of genes change expression over the course of a wine fermentation to allow S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns have previously revealed genes that underlie cellular adaptation to the grape must and wine environment involving metabolic specialization and ethanol tolerance. However, the vast majority of studies detailing gene expression patterns have occurred in controlled environments that do not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, we present an analysis of the S. cerevisiae RC212 gene expression program across 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. We observe a core gene expression program across all fermentations irrespective of vintage similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non- Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes at industry-relevant scales. Importance This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using production-relevant conditions. The reported gene expression patterns of RC212 is generally similar to that observed in laboratory fermentation conditions, but also contains gene expression signatures related to yeast-environment interactions found in a production setting (e.g., presence of non- Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain under-characterized, raising the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
6
Citation1
0
Save
1

Mapping global shifts inSaccharomyces cerevisiaegene expression across asynchronous time trajectories with diffusion maps

Taylor Reiter et al.Feb 12, 2021
+2
R
R
T
Abstract Grapes grown in a particular geographic region often produce wines with consistent characteristics, suggesting there are site-specific factors driving recurrent fermentation outcomes. However, our understanding of the relationship between site-specific factors, microbial metabolism, and wine fermentation outcomes are not well understood. Here, we used differences in Saccharomyces cerevisiae gene expression as a biosensor for differences among Pinot noir fermentations from 15 vineyard sites. We profiled time series gene expression patterns of primary fermentations, but fermentations proceeded at different rates, making analyzes of these data with conventional differential expression tools difficult. This led us to develop a novel approach that combines diffusion mapping with continuous differential expression analysis. Using this method, we identified vineyard specific deviations in gene expression, including changes in gene expression correlated with the activity of the non-Saccharomyces yeast Hanseniaspora uvarum , as well as with initial nitrogen concentrations in grape musts. These results highlight novel relationships between site-specific variables and Saccharomyces cerevisiae gene expression that are linked to repeated wine fermentation outcomes. In addition, we demonstrate that our analysis approach can extract biologically relevant gene expression patterns in other contexts (e.g., hypoxic response of Saccharomyces cerevisiae ), indicating that this approach offers a general method for investigating asynchronous time series gene expression data. Importance While it is generally accepted that foods, in particular wine, possess sensory characteristics associated with or derived from their place of origin, we lack knowledge of the biotic and abiotic factors central to this phenomenon. We have used Saccharomyces cerevisiae gene expression as a biosensor to capture differences in fermentations of Pinot noir grapes from 15 vineyards across two vintages. We find that gene expression by non- Saccharomyces yeasts and initial nitrogen content in the grape must correlates with differences in gene expression among fermentations from these vintages. These findings highlight important relationships between site-specific variables and gene expression that can be used to understand, or possibly modify, wine fermentation outcomes. Our work also provides a novel analysis method for investigating asynchronous gene expression data sets that is able to reveal both global shifts and subtle differences in gene expression due to varied cell – environment interactions.