JZ
Jason Ziveri
Author with expertise in Bacterial Physiology and Genetics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transketolase is involved in the control of Sigma B during chronic infection byStaphylococcus aureus

Xin Tan et al.Feb 2, 2019
Abstract Staphylococcus aureus is a leading cause of both acute and chronic infections in humans. Its ability to persist within host cells is thought to play an important role in chronicity and treatment failures. The importance of the pentose phosphate pathway (PPP) during S. aureus chronic infection is currently largely unexplored. Here, we focused on one key PPP enzyme, transketolase. We showed that inactivation of the unique gene encoding transketolase activity in S. aureus USA300 (Δ tkt ) led to an impaired growth in broth. Using time-lapse video imaging, we correlated this phenotype with a defect in early intracellular proliferation compared to wild-type strain. As determined by metabolomic analysis, tkt inactivation also had an important impact on S. aureus metabolism. We then monitored long-term intracellular persistence over 10 days by counting of viable bacteria. Unexpectedly for such a slow-growing strain, the Δ tkt mutant was almost completely eliminated by endothelial cells after ten days, as opposed to a prototypical slow-growing Δ hemDBL mutant for which we recovered 1,000 fold more viable bacteria. We found that in infected cells, the transcriptional activity of the two master regulators Sigma B and RpiRc was drastically reduced in the Δ tkt mutant compared to wild-type strain. Concomitantly, RNAIII transcription was strongly increased. This transcriptional profile is likely to explain the inability of this slow-growing mutant to sustain long-term intracellular survival, suggesting that TKT -or a functional PPP-is required for intracellular bacteria to enable a transcriptional program geared towards persistence. Importance Staphylococcus aureus is a leading cause of severe bacterial infections. This bacterium is readily internalized by non-professional phagocytes and infected cells have been proposed to play an important role in chronic infections and treatment failures. Here, we show the importance of the unique transketolase TKT of S. aureus USA300 in bacterial adaptation during chronic intracellular infection. We show that TKT is mandatory for the metabolomic homeostasis of S. aureus during intracellular persistence. This work unravels the critical role of TKT in the transcriptional regulation of the master regulators Sigma B, RpiRc and RNAIII linking the pentose phosphate pathway to the control of chronic S. aureus infections.
0
Citation1
0
Save
4

The Pentose Phosphate Pathway constitutes a major metabolic hub in pathogenicFrancisella

Héloïse Rytter et al.Jan 17, 2021
Abstract Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and hence represent potential targets for anti-bacterial strategies. Here, we addressed the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida . The involvement of the PPP in Francisella intracellular life cycle was first demonstrated with the study of PPP inactivation mutants. Indeed, inactivation of tktA, rpiA or rpe genes, severely impaired intramacrophagic multiplication during the first 24 hours. Time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular bacterial multiplication. To get further insight into the links between the PPP and other metabolic networks of the bacterium, we next performed a thorough proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections with glycolysis, tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Hence, our study highlights how the PPP is instrumental to Francisella pathogenesis and growth in its intracellular niche.
0

Angiopoietin-like 4 protects against endothelial dysfunction during bacterial sepsis

Jason Ziveri et al.Aug 5, 2024
Loss of endothelial integrity and vascular leakage are central features of sepsis pathogenesis; however, no effective therapeutic mechanisms for preserving endothelial integrity are available. Here we show that, compared to dermal microvessels, brain microvessels resist infection by Neisseria meningitidis, a bacterial pathogen that causes sepsis and meningitis. By comparing the transcriptional responses to infection in dermal and brain endothelial cells, we identified angiopoietin-like 4 as a key factor produced by the brain endothelium that preserves blood–brain barrier integrity during bacterial sepsis. Conversely, angiopoietin-like 4 is produced at lower levels in the peripheral endothelium. Treatment with recombinant angiopoietin-like 4 reduced vascular leakage, organ failure and death in mouse models of lethal sepsis and N. meningitidis infection. Protection was conferred by a previously uncharacterized domain of angiopoietin-like 4, through binding to the heparan proteoglycan, syndecan-4. These findings reveal a potential strategy to prevent endothelial dysfunction and improve outcomes in patients with sepsis. Therapeutic administration of angiopoietin-like 4 prevents shock during Neisseria meningitidis infection or lipopolysaccharide-induced sepsis in mice.
0

A post-translational modification of the sheath 1 modulates Francisella type VI secretion system assembly and function

Jason Ziveri et al.Jul 17, 2018
Francisella tularensis is a facultative intracellular pathogen that causes the zoonoticdisease tularemia in human and animal hosts. This bacterium possesses a non-canonical type VI secretion systems (T6SS) required for phagosomal escape and access to its replicative niche in the cytosol of infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the Francisella T6SS in culture. We found that the amounts of essentially all the TSS6 proteins remained unchanged upon KCl stimulation. We therefore hypothesized that a post-translational modification might be involved in T6SS assembly. A whole cell phosphoproteomic analysis allowed us to identify a unique phosphorylation site on IglB, the TssC homologue and key component of the T6SS sheath. Importantly, the phosphorylated form of IglB was not present in the contracted sheath and 3D modeling indicated that the charge repulsion provoked by addition of a phosphogroup on tyrosine 139 was likely to weaken the stability of the sheath structure. Substitutions of the phosphorylatable residue of IglB (tyrosine 139) with alanine or with phosphomimetics prevented T6SS formation and totally impaired phagosomal escape. In contrast, the substitution with the non-phosphorylatable aromatic analog phenylalanine impaired but did not prevent phagosomal escape and cytosolic bacterial multiplication in J774-1 macrophages. Altogether these data suggest that phosphorylation of the sheath participates to T6SS disassembly. Post-translational modifications of the sheath may represent a previously unrecognized mechanism to finely modulate the dynamics of T6SS assembly disassembly.