AM
Allison McClure
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
7
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation

Allison McClure et al.Apr 10, 2021
J
A
Summary The Rad53 DNA checkpoint protein kinase plays multiple roles in the budding yeast cell response to DNA replication stress. Key amongst these is its enigmatic role in safeguarding DNA replication forks. Using DNA replication reactions reconstituted with purified proteins, we show Rad53 phosphorylation of Sld3/7 or Dbf4-dependent kinase blocks replication initiation whilst phosphorylation of Mrc1 or Mcm10 slows elongation. Mrc1 phosphorylation is necessary and sufficient to slow replication forks in complete reactions; Mcm10 phosphorylation can also slow replication forks, but only in the absence of unphosphorylated Mrc1. Mrc1 stimulates the unwinding rate of the replicative helicase, CMG, and Rad53 phosphorylation of Mrc1 prevents this. We show that a phosphorylation-mimicking Mrc1 mutant cannot stimulate replication in vitro and partially rescues the sensitivity of a rad53 null mutant to genotoxic stress in vivo . Our results show that Rad53 protects replication forks in part by antagonising Mrc1 stimulation of CMG unwinding.
1
Citation3
0
Save
20

Identifying SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of Nsp15 Endoribonuclease

Berta Canal et al.Apr 8, 2021
+12
A
R
B
Summary SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered the economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro . Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.
20
Citation3
0
Save
8

Identification of SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of the nsp14 RNA Cap Methyltransferase

Souradeep Basu et al.Apr 8, 2021
+19
C
C
S
Summary The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. In order to identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play a key role in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2’-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5,000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified 4 compounds as potential inhibitors of nsp14, all of which also show antiviral capacity in a cell based model of SARS-CoV-2 infection. Three of the 4 compounds also exhibited synergistic effects on viral replication with remdesivir.
8
Citation1
0
Save
8

Identifying SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of Nsp14/nsp10 Exoribonuclease

Berta Canal et al.Apr 8, 2021
+17
J
A
B
Summary SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro . We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.
0

Mating in wild yeast: variable interest in sex after spore germination

Allison McClure et al.Jul 1, 2018
D
T
K
A
Studies of lab strains of Saccharomyces cerevisiae have uncovered signaling pathways involved in mating, including information processing strategies to optimize decisions to mate or to bud. However, lab strains are heterothallic, while wild yeast are homothallic. And while mating of lab strains is studied using cycling haploid cells, mating of wild yeast is thought to involve germinating spores. Thus, it was unclear whether lab strategies would be appropriate in the wild. Here, we have investigated the behaviors of several yeast strains derived from wild isolates. Following germination, these strains displayed large differences in their propensity to mate or to enter the cell cycle. The variable interest in sex following germination was correlated with differences in pheromone production, which were due to both cis- and trans-acting factors. Our findings suggest that yeast spores germinating in the wild may often enter the cell cycle and form microcolonies prior to engaging in mating.