MG
Marcel Garcia
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
238
h-index:
26
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Time evolution of PEG-shedding and serum protein coronation determines the cell uptake kinetics and delivery of lipid nanoparticle formulated mRNA

Marcel Garcia et al.Aug 20, 2021
Abstract Development of efficient lipid nanoparticle (LNP) vectors remains a major challenge towards broad clinical translation of RNA therapeutics. New lipids will be required, but also better understanding LNP interactions with the biological environment. Herein, we model protein corona formation on PEG-ylated DLin-MC3-DMA LNPs and identify time-dependent maturation steps that critically unlock their cellular uptake and mRNA delivery. Uptake requires active serum proteins and precedes after a significant (∼2 hours) lag-time, which we show can be eliminated by pre-incubating LNPs for 3-4 hours in serum-containing media. This indicates an important role of protein corona maturation for the pharmacokinetic effects of these LNPs. We show, using single-nanoparticle imaging, NMR diffusometry, SANS, and proteomics, that the LNPs, upon serum exposure, undergo rapid PEG-shedding (∼30 minutes), followed by a slower rearrangement of the adsorbed protein layer. The PEG-shedding coincides in time with high surface abundance of Apolipoprotein A-II, whereas the LNPs preferentially bind Apolipoprotein E when their maximum uptake-competent state is reached. Finally, we show that pre-incubation of the LNPs enables rapid uptake and allows pulse-chase video-microscopy colocalization experiments with sufficiently short pulse durations to gain improved mechanistic understanding of how intracellular trafficking events determine delivery efficacy, emphasizing early endosomes as important delivery-mediating compartments.
19
Paper
Citation12
0
Save
27

Negative curvature-promoting lipids instruct nuclear ingression of low autophagic potential vacuoles

Marcel Garcia et al.Jun 28, 2021
Abstract Membrane contact sites are functional nodes at which organelles exchange information through moving ions, proteins and lipids, thus driving the reorganization of metabolic pathways and the adaptation to changing cues. The nuclear-vacuole junction of Saccharomyces cerevisiae is among the most extensive and better-known organelle contact sites, described to expand in response to various metabolic stresses. While using genotoxins with unrelated purposes, we serendipitously discovered a phenomenon that we describe as the most extreme and intimate contact ever reported between nuclei and vacuoles: the vacuole becomes completely internalized in the nucleus. We define lipids supporting negative curvature, such as phosphatidic acid and sterols, as bona-fide drivers of this event. Functionally, we purport that internalized vacuoles are low efficiency ones whose removal from the cytoplasm optimizes cargo interaction with functional vacuoles. Thus, our findings also point to nucleus-vacuole interactions as important for metabolic adaptation. Yet, rather than by inter-organelle exchanges, the underlying mechanism literally concurs with vacuolar sequestration.
27
Citation3
0
Save
8

Stealth fluorescence labeling for live microscopy imaging of mRNA delivery

Tom Baladi et al.Jul 2, 2020
Abstract Methods for tracking of RNA molecules inside living cells are critical to probe their dynamics and biological functions, but also to monitor delivery of therapeutic RNA. We here describe a method for fluorescence labeling of RNAs of any length, via the enzymatic incorporation of the minimally perturbing and intrinsically fluorescent tricyclic cytosine analogue tC O . Using this approach, we demonstrate incorporation of tC O in up to 100% of all natural cytosine positions of a 1.2 kb mRNA encoding for the histone H2B fused to GFP (H2B:GFP). The resulting transcript is fully compatible with both in vitro transcription and subsequent in cell translation. Spectroscopic characterization of the in vitro transcribed mRNA, shows that the incorporation rate of tC O is on par with cytosine, facilitating efficient labeling and controlled tuning of labeling ratios for different applications. Using live cell confocal microscopy and flow cytometry, we show that the tC O -labeled mRNA is efficiently and correctly translated into H2B:GFP upon electroporation as well as lipid-mediated transfection of human Huh-7 cells; correct translation was further confirmed in cell-free systems. Importantly, the spectral properties of the tC O -modified transcripts and their translation product, in this case H2B:GFP, allow for their straightforward and simultaneous visualization in live cells.