AF
Ana Farias
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects

Erwan Lambert et al.Apr 4, 2021
+19
F
P
E
SUMMARY The Bridging Integrator 1 ( BIN1 ) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to BIN1iso8 and BIN1iso9, induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1 , and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
1
Citation1
0
Save
1

The Alzheimer’s disease risk gene BIN1 modulates neural network activity via the regulation of L-type calcium channel expression in human-induced neurons

Orthis Saha et al.Jan 20, 2022
+13
A
P
O
Abstract Background Bridging Integrator 1 ( BIN1 ) is the second most important Alzheimer’s disease (AD) risk gene, but its physiological roles in neurons and its contribution to brain pathology remain largely elusive. In this work, we show that BIN1 plays a critical role in the regulation of calcium homeostasis, electrical activity, and gene expression of glutamatergic neurons. Methods We generated 3D cerebral organoids and 2D enriched neuronal cell cultures from isogenic BIN1 wild-type (WT), heterozygous (HET) and homozygous knockout (KO) human-induced pluripotent stem cells (hiPSCs). Using single-cell RNA-sequencing, biochemical assays, immunocytochemistry and multi-electrode array(MEA) electrophysiology, we characterized the molecular and functional consequences of reduced BIN1 expression in different neural cell types. Results We show that BIN1 is mainly expressed by oligodendrocytes and glutamatergic neurons of cerebral organoids, like in the human brain. Both BIN1 HET and KO cerebral organoids show specific transcriptional alterations, mainly associated with ion transport and synapses in glutamatergic neurons. We then demonstrate that BIN1 cell-autonomously regulates gene expression in glutamatergic neurons by using a novel protocol to generate pure culture of human-derived induced neurons (hiNs). Using this system, we also show that BIN1 plays a key role in the regulation of neuronal calcium transients and electrical activity via its interaction with the L-type voltage-gated calcium channel Cav 1.2 . BIN1 KO hiNs show reduced activity-dependent internalization and higher Cav 1.2 expression compared to WT hiNs. Pharmacological treatment with clinically relevant doses of nifedipine, a calcium channel blocker, partly rescues neuronal electrical and gene expression alterations in BIN1 KO glutamatergic neurons. Further, we show that transcriptional alterations in BIN1 KO hiNs affecting biological processes related to calcium homeostasis are also present in glutamatergic neurons of the human brain at late stages of AD pathology. Conclusions Together, our findings suggest that BIN1-dependent alterations in neuronal properties could contribute to AD pathophysiology and that treatment with low doses of clinically approved calcium blockers should be considered as an option to dampen disease onset and progression.