IM
Izumi Mori
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
1,442
h-index:
44
/
i10-index:
102
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure

Izumi Mori et al.Oct 4, 2006
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.
0
Citation577
0
Save
0

Abscisic Acid Activation of Plasma Membrane Ca2+ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in abi1-1 and abi2-1 Protein Phosphatase 2C Mutants

Yoshiyuki Murata et al.Nov 1, 2001
The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these ICa Ca2+ channels requires the presence of NAD(P)H in the cytosol. The protein phosphatase 2C (PP2C) mutant abi1-1 disrupted ABA activation of ICa channels. Moreover, in abi1-1, ABA did not induce ROS production. Consistent with these findings, in abi1-1, H2O2 activation of ICa channels and H2O2-induced stomatal closing were not disrupted, suggesting that abi1-1 impairs ABA signaling between ABA reception and ROS production. The abi2-1 mutation, which lies in a distinct PP2C gene, also disrupted ABA activation of ICa. However, in contrast to abi1-1, abi2-1 impaired both H2O2 activation of ICa and H2O2-induced stomatal closing. Furthermore, ABA elicited ROS production in abi2-1. These data suggest a model with the following sequence of events in early ABA signal transduction: ABA, abi1-1, NAD(P)H-dependent ROS production, abi2-1, ICa Ca2+ channel activation followed by stomatal closing.
0

Involvement of extracellular oxidative burst in salicylic acid‐induced stomatal closure in Arabidopsis

Md. Khokon et al.Nov 10, 2010
ABSTRACT Salicylic acid (SA), a ubiquitous phenolic phytohormone, is involved in many plant physiological processes including stomatal movement. We analysed SA‐induced stomatal closure, production of reactive oxygen species (ROS) and nitric oxide (NO), cytosolic calcium ion ([Ca 2+ ] cyt ) oscillations and inward‐rectifying potassium (K + in ) channel activity in Arabidopsis . SA‐induced stomatal closure was inhibited by pre‐treatment with catalase (CAT) and superoxide dismutase (SOD), suggesting the involvement of extracellular ROS. A peroxidase inhibitor, SHAM (salicylhydroxamic acid) completely abolished SA‐induced stomatal closure whereas neither an inhibitor of NADPH oxidase (DPI) nor atrbohD atrbohF mutation impairs SA‐induced stomatal closures. 3,3′‐Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) stainings demonstrated that SA induced H 2 O 2 and O 2 – production. Guard cell ROS accumulation was significantly increased by SA, but that ROS was suppressed by exogenous CAT, SOD and SHAM. NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) suppressed the SA‐induced stomatal closure but did not suppress guard cell ROS accumulation whereas SHAM suppressed SA‐induced NO production. SA failed to induce [Ca 2+ ] cyt oscillations in guard cells whereas K + in channel activity was suppressed by SA. These results indicate that SA induces stomatal closure accompanied with extracellular ROS production mediated by SHAM‐sensitive peroxidase, intracellular ROS accumulation and K + in channel inactivation.
26

Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators

Zhishuo Wang et al.Oct 5, 2021
Abstract The ubiquitin-proteasome system is vital to hormone-mediated developmental and stress responses in plants. Ubiquitin ligases target hormone-specific transcriptional activators (TAs) for degradation, but how TAs are processed by proteasomes remains unknown. We report that in Arabidopsis the salicylic acid-and ethylene-responsive TAs, NPR1 and EIN3, are relayed from pathway-specific ubiquitin ligases to proteasome-associated HECT-type UPL3/4 ligases. Activity and stability of NPR1 was regulated by sequential action of three ubiquitin ligases, including UPL3/4, while proteasome processing of EIN3 required physical handover between ethylene-responsive SCF EBF2 and UPL3/4 ligases. Consequently, UPL3/4 controlled extensive hormone-induced developmental and stress-responsive transcriptional programmes. Thus, our findings identify unknown ubiquitin ligase relays that terminate with proteasome-associated HECT-type ligases, which may be a universal mechanism for processive degradation of proteasome-targeted TAs and other substrates. One-Sentence Summary Transcriptional activators are targeted by proteasomal ubiquitin ligase relays that control their activity and stability.
26
Citation3
0
Save
0

Low temperature transcriptionally modulates natural peel degreening in lemon (Citrus limon L.) fruit independently of endogenous ethylene

Oscar Mitalo et al.Nov 27, 2019
Peel degreening is an important aspect of fruit ripening in many citrus fruit, and earlier studies have shown that it can be advanced either by ethylene treatment or during low temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To understand how natural peel degreening is regulated in lemon (Citrus limon L.) fruit, flavedo transcriptome and physiochemical changes in response to either ethylene treatment or low temperature were studied. Ethylene treatment induced rapid peel degreening which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25°C, moderately low temperatures (5°C, 10°C, 15°C and 20°C) also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. On-tree peel degreening occurred along with environmental temperature drops, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit.