FM
Fatima Mostefai
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
6
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
26

Data-driven approaches for genetic characterization of SARS-CoV-2 lineages

Fatima Mostefai et al.Sep 29, 2021
+14
J
I
F
Abstract The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajima’s D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.
26
Citation3
0
Save
25

The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA supertype-dependent manner

David Hamelin et al.Jun 3, 2021
+13
J
D
D
SUMMARY The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has led to the emergence of a diverse range of variants. The initial concerns regarding the virus were quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity, pathogenicity and immunogenicity. To address the latter, we seek to understand how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic, before mass vaccination. We analyzed a total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2 diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family. In addition, we show that this predicted global loss of epitopes is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic. Together, our study lays the foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and T cell immunity across human populations. The proposed theoretical framework has implications in viral evolution, disease severity, vaccine resistance and herd immunity.
25
Citation2
0
Save
37

Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping combined with genome sequence analysis

Arnaud N’Guessan et al.Jun 2, 2022
+12
F
S
A
ABSTRACT A deeper understanding of the molecular determinants that drive humoral responses to coronaviruses, and in particular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is critical for improving and developing diagnostics, therapies and vaccines. Moreover, viral mutations can change key antigens in a manner that alters the ability of the immune system to detect and clear infections. In this study, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses of asymptomatic or recovered COVID-19-positive patients relative to COVID-19-negative patients. We made use of a novel high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses to rapidly identify B cell epitopes recognized by distinct antibody isotypes in patients’ blood sera. Using our integrated computational pipeline, we then evaluated the fine immunological properties of detected SARS-CoV-2 epitopes and relate them to their evolutionary and structural properties. While some epitopes are common across all CoVs, others are private to specific hCoVs. We also highlight the existence of hotspots of pre-existing immunity and identify a subset of cross-reactive epitopes that contributes to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves and SARS-CoV-2 variants, which have important implications for genomic surveillance and vaccine design. Lastly, we show that mutations in Spike and Nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.
37
Citation1
0
Save
16

Intra-host viral populations of SARS-CoV-2 in immunosuppressed patients with hematologic cancers

Dominique Fournelle et al.Oct 20, 2022
+12
E
F
D
Abstract Throughout the SARS-CoV-2 pandemic, several variants of concern (VOC) have been identified, many of which share recurrent mutations in the spike protein’s receptor binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we show that immunosuppressed patients with hematologic cancers develop distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. Furthermore, we provide the first evidence for a viral reservoir based on intra-host phylogenetics. Our results on viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable as well as an alternative explanation for some long-COVID cases. Our findings also highlight that protracted infections should be treated with combination therapies rather than by a single mAbs to clear pre-existing resistant mutations.