AD
Andrea Dimitracopoulos
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
496
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Effective cell membrane tension is independent of polyacrylamide substrate stiffness

Eva Kreysing et al.Nov 11, 2021
Abstract Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex. Both structures are linked, and they are under tension. In-plane membrane tension and cortical tension both influence many cellular processes, including cell migration, division, and endocytosis. However, while actomyosin tension is regulated by substrate stiffness, how membrane tension responds to mechanical substrate properties is currently poorly understood. Here, we probed the effective membrane tension of neurons and fibroblasts cultured on glass and polyacrylamide substrates of varying stiffness using optical tweezers. In contrast to actomyosin-based traction forces, both peak forces and steady state tether forces of cells cultured on hydrogels were independent of substrate stiffness and did not change after blocking myosin II activity using blebbistatin, indicating that tether and traction forces are not directly linked. Peak forces in fibroblasts on hydrogels were about twice as high as those in neurons, indicating stronger membrane-cortex adhesion in fibroblasts. Steady state tether forces were generally higher in cells cultured on hydrogels than on glass, which we explain by a mechanical model. Our results provide new insights into the complex regulation of effective membrane tension and pave the way for a deeper understanding of the biological processes it instructs.
14
Citation2
0
Save
0

Substrate stiffness regulates neuronal maturation via Piezo1-mediated TTR activity

Eva Kreysing et al.Jul 25, 2024
Abstract During brain development, neurons extend axons to connect to their target cells while initiating a maturation process, during which neurons start expressing voltage-gated ion channels, form synapses, express synaptic transmitters and receptors, and start communicating via action potentials. Little is known about external factors regulating this process. Here, we identified environmental mechanics as an important regulator of neuronal maturation, and a molecular pathway linking tissue stiffness to this process. Using patch clamp electrophysiology, calcium imaging and immunofluorescence, we found that neurons cultured on stiffer substrates showed a delay in voltage-gated ion channel activity, spontaneous and evoked action potentials, and synapse formation. RNA sequencing and CRISPR/Cas9 knockdown strategies revealed that the mechanosensitive ion channel Piezo1 supresses transthyretin (TTR) expression on stiffer substrates, slowing down synaptic receptor expression and consequently electrical maturation. Stiffening of brain tissue in Xenopus laevis embryos also resulted in a significant delay of synaptic activity in vivo . Our data indicate that environmental stiffness represents a fundamental regulator of neuronal maturation, which is important for the development of normal circuitry in the brain, and potentially for neurodevelopmental disorders.