FL
Francesca Leva
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
2
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Defective linear and circular RNAs biogenesis in Huntington’s disease: CAG repeat expansion hijacks neuronal splicing

Dilara Ayyildiz et al.Dec 27, 2021
+14
T
A
D
ABSTRACT Alternative splicing (AS) appears to be altered in Huntington’s disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a strong correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, expanded Htt CAG repeats reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Though the mechanisms of this dysregulation remain uncertain, our study unveils network of transcriptionally altered micro-RNAs and RNA-binding proteins (CELF, hnRNPS, PTBP, SRSF) which, in turn, might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might result in altered neural fitness, contributing to HD striatal vulnerability.
10
Citation2
0
Save
0

CHD8 Suppression Impacts on Histone H3 Lysine 36 Trimethylation and Alters RNA Alternative Splicing.

Emanuela Kerschbamer et al.Mar 16, 2020
+11
S
T
E
Disruptive mutations in the chromodomain helicase DNA binding protein 8 (CHD8) have been recurrently associated with Autism Spectrum Disorders (ASD). In normal cellular physiology, CHD8 co-purifies with MLL1 and MOF transcriptional activation complex, with elongating RNAPII and directly binds to DNA promoters and enhancers regions, thus a regulatory role in transcriptional initiation and elongation could be postulated. Here we investigated how chromatin landscape reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. We interrogated transcriptionally active and repressed regions, as well as active and poised enhancers. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes. Histone H3K36me3 reduction associated to CHD8-suppression does not functionally impact on global transcriptional levels, but correlated with altered alternative splicing patterns of ~ 2000 protein coding genes implicated in 'RNA splicing', 'mitotic cell cycle phase transition' and 'mRNA processing', especially affecting alternative first exon and exon skipping events. In summary, our results point toward broad molecular consequences of CHD8 suppression, implicating altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.