JD
Josh Dubnau
Author with expertise in Regulation of RNA Processing and Function
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

A behavioral screen for mediators of age-dependent TDP-43 neurodegeneration identifies SF2/SRSF1 among a group of potent suppressors in both neurons and glia

Jorge Azpurua et al.May 13, 2021
Abstract Cytoplasmic aggregation of Tar-DNA/RNA binding protein 43 (TDP-43) occurs in 97 percent of amyotrophic lateral sclerosis (ALS), about 40 percent of frontotemporal dementia (FTD) and in many cases of Alzheimer’s disease (AD). Cytoplasmic TDP-43 inclusions are seen in both sporadic and familial forms of these disorders, including those cases that are caused by repeat expansion mutations in the C9orf72 gene. To identify downstream mediators of TDP-43 toxicity, we expressed human TDP-43 in a subset of Drosophila motor neurons. Such expression causes age-dependent deficits in negative geotaxis behavior. Using this behavioral readout of locomotion, we conducted an shRNA suppressor screen and identified 32 transcripts whose knockdown was sufficient to ameliorate the neurological phenotype. The majority of these suppressors also substantially suppressed the negative effects on lifespan seen with glial TDP-43 expression. In addition to identification of a number of genes whose roles in neurodegeneration were not previously known, our screen also yielded genes involved in chromatin regulation and nuclear/import export-pathways that were previously identified in the context of cell based or neurodevelopmental suppressor screens. A notable example is SF2 , a conserved orthologue of mammalian SRSF1 , an RNA binding protein with roles in splicing and nuclear export. Our identification SF2/SRSF1 as a potent suppressor of both neuronal and glial TDP-43 toxicity also provides a convergence with C9orf72 expansion repeat mediated neurodegeneration, where this gene also acts as a downstream mediator. Author Summary Loss of nuclear function of TDP-43 and its mislocalization into cytoplasmic inclusions are central features to a suite of neurodegenerative disorders. We screened 2700 Drosophila genes to identify downstream mediators that suppress an age-dependent motor dysfunction phenotype when they are knocked down by RNA interference. We identified both previously implicated pathways and several novel genes whose knock down is sufficient to dramatically and robustly rescue TDP-43 toxicity both in neuronal and glial contexts. Notably, we report that SF2/SRSF1 , which was previously reported as a suppressor of C9orf72 hexanucleotide expansion repeat toxicity, also is a potent suppressor of TDP-43 mediated neurodegeneration.
6
Citation1
0
Save
0

Retrotransposon Activation Contributes to Neurodegeneration in a Drosophila TDP-43 Model of ALS.

Lisa Krug et al.Nov 28, 2016
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD.
0

Cellular labeling of endogenous virus replication (CLEVR) reveals de novo insertions of the gypsy endogenous retrovirus in cell culture and in both neurons and glial cells of aging fruit flies

Yung-Heng Chang et al.Oct 16, 2018
Evidence is rapidly mounting that transposable element expression and replication may impact biology more widely than previously thought. This includes potential effects on normal physiology of somatic tissues and dysfunctional impacts in diseases associated with aging such as cancer and neurodegeneration. Investigation of the biological impact of mobile elements in somatic cells will be greatly facilitated by use of donor elements that are engineered to report de novo events in vivo. In multicellular organisms, successful reporters of LINE element mobilization have been in use for some time, but similar strategies have not been developed to report Long Terminal Repeat (LTR) retrotransposons and endogenous retroviruses. We describe Cellular Labeling of Endogenous Virus Replication (CLEVR), which reports replication of the gypsy element in Drosophila. The gypsy-CLEVR reporter reveals gypsy replication both in cell culture and in individual neurons and glial cells of the aging adult fly. We also demonstrate that the gypsy-CLEVR replication rate is increased when the short interfering RNA silencing system is genetically disrupted. This CLEVR strategy makes use of universally conserved features of retroviruses and should be widely applicable to other LTR-retrotransposons, endogenous retroviruses and exogenous retroviruses.
0

Nuclear transcriptomes of the seven neuronal cell types that constitute the Drosophila mushroom bodies.

Min-Yi Shih et al.Sep 10, 2018
The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The Drosophila melanogaster MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α′/β′ and α/β) and 7 cell subtypes (γd, γm, α′/β′ap, α′/β′m, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker Fas2 and the α′/β′ class marker trio. Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the Drosophila MB provides a valuable resource for the fly neuroscience community.
0

Intercellular viral spread and intracellular transposition ofDrosophilagypsy

Richard Keegan et al.May 30, 2020
Abstract It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-retrotransposons are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) that derive from an exogenous retrovirus that have integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. The fact that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration raises the question of whether their replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.