MM
Magnus Manske
Author with expertise in Malaria
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,225
h-index:
28
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto et al.Jan 19, 2015
Dominic Kwiatkowski and colleagues report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin. They identify markers of a genetic background on which kelch13 mutations conferring artemisinin resistance are likely to emerge. We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.
0
Citation555
0
Save
0

Optimizing illumina next-generation sequencing library preparation for extremely at-biased genomes

Samuel Oyola et al.Jan 1, 2012
Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences.We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates.We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.
0
Citation550
0
Save
0

Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

Magnus Manske et al.Jun 12, 2012
Next-generation sequencing is used here to analyse Plasmodium falciparum genome variation directly from clinical blood samples, as well as cultured isolates, from Africa, Asia and Oceania. Resistance to the major antimalarial drug artemisinin is emerging in the Plasmodium falciparum parasite across Southeast Asia, and there is concern that the increased deployment of antimalarials in pursuit of disease eradication might simply lead to increased drug resistance. To monitor these risks it is important to survey the parasite population for genetic changes. Next-generation sequencing is used here to analyse P. falciparum genome variation directly from nearly 300 clinical blood samples, and from cultured isolates from Africa, Asia and Oceania. The authors use these data to analyse the diversity of the parasite population across different geographical locations, as well as within-host diversity at the level of the whole genome, and they show how this may be used to estimate inbreeding rates, which are important for the evolution of drug resistance. Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance1,2. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
0
Citation481
0
Save
0

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto et al.Apr 28, 2013
Dominic Kwiatkowski and colleagues report analysis of genetic variation in 826 Plasmodium falciparum samples collected from 10 locations in West Africa and southeast Asia. They characterize the population structure of this parasite in Cambodia and find evidence for multiple distinct subpopulations showing high levels of genetic differentiation and artemisinin resistance. We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.
0
Citation448
0
Save
0

Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification

Samuel Oyola et al.Aug 11, 2016
Translating genomic technologies into healthcare applications for the malaria parasite Plasmodium falciparum has been limited by the technical and logistical difficulties of obtaining high quality clinical samples from the field. Sampling by dried blood spot (DBS) finger-pricks can be performed safely and efficiently with minimal resource and storage requirements compared with venous blood (VB). Here, we evaluate the use of selective whole genome amplification (sWGA) to sequence the P. falciparum genome from clinical DBS samples, and compare the results to current methods using leucodepleted VB. Parasite DNA with high (> 95%) human DNA contamination was selectively amplified by Phi29 polymerase using short oligonucleotide probes of 8-12 mers as primers. These primers were selected on the basis of their differential frequency of binding the desired (P. falciparum DNA) and contaminating (human) genomes. Using sWGA method, we sequenced clinical samples from 156 malaria patients, including 120 paired samples for head-to-head comparison of DBS and leucodepleted VB. Greater than 18-fold enrichment of P. falciparum DNA was achieved from DBS extracts. The parasitaemia threshold to achieve >5x coverage for 50% of the genome was 0.03% (40 parasites per 200 white blood cells). Over 99% SNP concordance between VB and DBS samples was achieved after excluding missing calls. The sWGA methods described here provide a reliable and scalable way of generating P. falciparum genome sequence data from DBS samples. Our data indicate that it will be possible to get good quality sequence data on most if not all drug resistance loci from the majority of symptomatic malaria patients. This technique overcomes a major limiting factor in P. falciparum genome sequencing from field samples, and paves the way for large-scale epidemiological applications.